K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Đặt \(\sin^2\alpha=x\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(A=x^3+\left(1-x\right)^3+3x-\left(1-x\right)=x^3+1-3x+3x^2-x^3+3x-1+x=3x^2+x\)

Vậy \(A=3\sin^4\alpha+\sin^2\alpha\). NHỚ NHA!

7 tháng 9 2016

\(A=sin^6\alpha+cos^6\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha\right)^3+\left(cos^2\alpha\right)^3+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha\right)+3sin^2\alpha-cos^2\alpha\)

\(=sin^4\alpha+cos^4\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^2-2sin^2\alpha.cos^2\alpha-sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha\)

\(1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha-cos^2\alpha=3sin^2\alpha\left(1-cos^2\alpha\right)+\left(1-cos^2\alpha\right)\)

\(=\left(3sin^2\alpha+1\right).sin^2\alpha=0\)

17 tháng 8 2018

sữa đề chút nha :

+) ta có : \(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{\left(sin\alpha+cos\alpha\right)^2}{\left(sin\alpha+cos\alpha\right)\left(cos\alpha-sin\alpha\right)}=\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)

+) ta có :

\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)

\(=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)

\(=1-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha=1\)

18 tháng 8 2017

\(sin^4a+cos^4a+2sin^2a.cos^2a=\left(sin^2a+cos^2a\right)^2=1^2=1\)

18 tháng 8 2017

b) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2a.cos^2a+cos^4a\right)+3sin^2a.cos^2a=sin^4a+2sin^2a.cos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)

Bài 2: 

a: \(\sin a=\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)

\(P=4\cdot\sin^2a-6\cdot\cos^2a\)

\(=4\cdot\dfrac{9}{25}-6\cdot\dfrac{16}{25}\)

\(=\dfrac{36-64}{25}=\dfrac{-28}{25}\)

b: \(A=\sin^6a+\cos^6a+3\cdot\sin^2a\cdot\cos^2a\)

\(=\left(\sin^2a+\cos^2a\right)^3-3\sin^2a\cdot\cos^2a\cdot\left(\sin^2a+\cos^2a\right)+3\cdot\sin^2a\cdot\cos^2a\)

\(=1-3\sin^2a\cdot\cos^2a+3\sin^2a\cdot\cos^2a\)

=1