Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)
b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\sqrt{x}=a,\sqrt{y}=b\)
Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)
\(\Rightarrow B=x+\sqrt{xy}+y\)
Vậy...
c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)
d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)
a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)
= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)
=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)
= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)
b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)
=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )
= (x+\(\sqrt{xy}\)+y)
c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)
Tương tự câu a
d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)
tương tự câu a
e:2x +√1−6x+9x23x−1
= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)
= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)
=2x+\(\dfrac{3x-1}{3x-1}\)
=2x+1
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Ta có \(\left(x+y+z\right)^2-x^2-y^2-z^2=a^2-b\Rightarrow2\left(xy+yz+zx\right)=2048\Rightarrow xy+yz+zx=2014\)
với xy+yz+zx=2014, thay vào, ta có A=\(\sum x\sqrt{\dfrac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=\sum x\sqrt{\dfrac{\left(y+z\right)^2\left(y+x\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}=\sum x\left(y+z\right)=2\left(xy+yz+zx\right)=2048\)
\(y^2=a^2\left(1+b^2\right)+b^2\left(1+a^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(x^2=a^2b^2+\left(1+a^2\right)\left(1+b^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}+1\)
\(\Rightarrow y^2+1=x^2\)
\(\Rightarrow y^2=x^2-1\)
\(\Rightarrow y=\sqrt{x^2-1}\)
Đề đúng : Cho \(a=xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) , \(b=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính b theo a, biết x,y> 0
Giải :
Ta có : \(a^2=\left(xy\right)^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-1\)
Vậy \(b=\sqrt{a^2-1}\)(vì x,y> 0 nên b > 0)
khó quá đi em mới học lớp 6 thôi hu hu
<img class="irc_mi i5I_Ps3Xg92k-pQOPx8XEepE" alt="" style="margin-top: 100px;" src="http://dungfacebook.net/wp-content/uploads/2015/11/622.jpg" width="304" height="196">
n) Ta có: \(N=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\left(\dfrac{1}{\sqrt{x}-\sqrt{y}}\right)^2\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\cdot\dfrac{1}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
=1
o) Ta có: \(O=\left(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}\right)^2\)
\(=\left(\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}\right):\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
=1
p) Ta có: \(P=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)
\(=\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}+1}\cdot\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}-1\)
q) Ta có: \(Q=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\dfrac{x+xy}{1-xy}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{x+xy}{1-xy}\)
\(=\dfrac{x\sqrt{y}+\sqrt{x}+y\sqrt{x}+\sqrt{y}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{x+xy}\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{x+xy}\)
\(=\dfrac{2\sqrt{x}\left(1+y\right)}{x\left(1+y\right)}\)
\(=\dfrac{2}{\sqrt{x}}\)