\(A=\left|2x-1\right|-\left(x-5\right)\)

a) Rút giá trị biểu thức A.

b) V...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

a) Xét các trường hợp

- Với x \(\ge\frac{1}{2}\)thì 2x-1\(\ge0\)nên | 2x -1 | = 2x-1 . Ta có :

\(A=2x-1-x+5=x+4\)

- Với x < \(\frac{1}{2}\) thì 2x - 1 < 0 nên | 2x -1 | =1 - 2x . Ta có :

\(A=1-2x-x+5=-3x+6\)

b) Trường hợp 1 : \(\hept{\begin{cases}x+4=4\\x\ge\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x\ge\frac{1}{2}\end{cases}}}\) 

=> Không tồn tại x 

Trường họp 2 : \(\hept{\begin{cases}-3+6=4\\x< \frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\x< \frac{1}{2}\end{cases}}}\)

=> Không tồn tại x 

Vậy ____

1 tháng 11 2018

a.\(A=\left|2x-1\right|-\left(x-5\right).\)

\(=2x-1-x+5\)

\(=\left(2x-x\right)+\left(5-1\right)\)

\(=x+4\)

b/\(A=x+4=5\Leftrightarrow x=1\)

24 tháng 10 2016

Với các giá trị của x sao cho \(2x-1\ne0\) thì \(\left|2x-1\right|>0\). Khi đó

\(A=5-\left|2x-1\right|< 5\)

Vớ giá trị của x mà \(2x-1=0\) thì \(\left|2x-1\right|=0\). Khi đó

\(A=5-0=5\)

Vậy, nếu \(2x-1=0\), tức là với \(x=\frac{1}{2}\) thì A đạt giá trị lớn nhất.

24 tháng 10 2016

Có: \(\left|2x-1\right|\ge0\forall x\) \(\Rightarrow-\left|2x-1\right|\le0\forall x\)

\(\Rightarrow5-\left|2x-1\right|\le5\forall x\)

Dấu ''='' xảy ra khi |2x - 1| = 0

=> 2x - 1 = 0

=> 2x = 1

=> \(x=\frac{1}{2}\)

Vậy với x = \(\frac{1}{2}\) thì biểu thức A có giá trị lớn nhất là 5

18 tháng 1 2020

giúp mình với 

18 tháng 1 2020

Ta có : \(f\left(x\right)=\left|x-1\right|-\left(2x-5\right)\)

Xét 2 TH:

+) Nếu \(\left|x-1\right|=x-1\)

=> \(f\left(x\right)=x-1-2x+5\)

=> \(f\left(x\right)=4-x\)

+) Nếu \(\left|x-1\right|=1-x\)

=> \(f\left(x\right)=1-x-2x+5\)

=> \(f\left(x\right)=6-3x\)

Vậy...

b) \(f\left(5\right)=\left|5-1\right|-\left(2.5-5\right)\)

=> \(f\left(5\right)=4-2=2\)

Vậy...

c) \(f\left(x\right)=0\)

=> \(\left|x-1\right|-\left(2x-5\right)=0\)

=> \(\left|x-1\right|=2x-5\)

Vì \(\left|x-1\right|\ge0\forall x\)

=> \(2x-5\ge0\)

=> \(x\ge\frac{5}{2}\)

=> \(x-1\ge\frac{5}{2}-1=\frac{3}{2}>0\)

=> \(\left|x-1\right|=x-1\)

=> \(x-1-2x+5=0\)

=> \(4-x=0\)

=> \(x=4\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

17 tháng 12 2016

lop 7 lam gi co nghiem voi da thuc ha ban

18 tháng 12 2016

Đề thi HSG lớp 7 đó bạn

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!