Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}=A\\\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}=B\end{cases}}\)(thật ra cx ko cần đặt,mk đặt làm cho gọn hơn thôi ^^)
Cauchy-Schwarz: \(A\ge\frac{9}{B}\)
Xét: \(B^2\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)=36\)
\(\Rightarrow B\le6\)
\(A\ge\frac{9}{B}\ge\frac{9}{6}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Đề bài đúng: Cho a\(\ge\)\(\frac{1}{2}\).CMR: \(\sqrt{2a-1}\)\(\le\)a
Điều phải chứng minh tương đương với
a2\(\ge\)2a-1
Mà điều này là hiểu nhiên vì nó tương đương với (a-1)2\(\ge\)0
Vậy: \(\sqrt{2a-1}\)\(\le\)a Với a\(\ge\)\(\frac{1}{2}\)
Dấu đẳng thức xảy ra khi a=1
Có: a + b = ab \(\le\frac{\left(a+b\right)^2}{4}\)
=> a + b \(\ge4\)
\(\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(\ge\frac{4}{a^2+b^2+2\left(a+b\right)}+\sqrt{\left(1+ab\right)^2}\)
\(=\frac{4}{a^2+b^2+2ab}+\left(1+a+b\right)=\frac{4}{\left(a+b\right)^2}+\left(a+b\right)+1\)
\(=\frac{4}{\left(a+b\right)^2}+\frac{a+b}{4^2}+\frac{a+b}{4^2}+\frac{7}{8}\left(a+b\right)+1\)
\(\ge3\sqrt[3]{\frac{4}{\left(a+b\right)^2}.\frac{a+b}{4^2}.\frac{a+b}{4^2}}+\frac{7}{8}.4+1=\frac{3}{4}+\frac{7}{2}+1\)
Dấu "=" xảy ra <=> a = b = 2
Dat \(P=\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\)
Ta co:
\(\frac{a}{\sqrt{2b^2+2c^2-a^2}}=\frac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\frac{\sqrt{3}a^2}{a^2+b^2+c^2}\)
Tuong tu:
\(\frac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\frac{\sqrt{3}b^2}{a^2+b^2+c^2}\)
\(\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\frac{\sqrt{3}c^2}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge\frac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
Dau '=' xay ra khi \(a=b=c\)
1. Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)
=> \(a-2\sqrt{ab}+b\ge0\)
=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)
=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)
=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);
(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)
1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)
Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)
Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)
Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :
\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
\(2\sqrt{1+a}=\sqrt{1+b}+\sqrt{1+c}\le\sqrt{2\left(1+b+1+c\right)}\)
\(\Rightarrow2\sqrt{1+a}\le\sqrt{2\left(2+b+c\right)}\)
\(\Rightarrow4\left(1+a\right)\le2\left(2+b+c\right)\)
\(\Rightarrow b+c\ge2a\)
1 bài BĐT rất hay !!!!!!
BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333
\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)
\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)
\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)
TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)
=> \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)
=> \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)
TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)
=> \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)
TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:
\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)
ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau:
=> \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)
=> \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)
=> \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)
=> \(S\ge\frac{1}{\sqrt{3}}\)
VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c=\sqrt{\frac{1}{27}}\)