Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)
BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)
Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)
b) Áp dụng BDT Cô-si có:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)
b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)
\(\Leftrightarrow3< 1\) ( Vô lý )
\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)
\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)
\(\Leftrightarrow2b-2\sqrt{ab}< 0\)
\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)
Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)
\(\RightarrowĐpcm.\)
\(2a.\) Áp dụng BĐT Cauchy , ta có :
\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)
\(\Leftrightarrow x-4=a^2\)
\(\Leftrightarrow x=a^2+4\left(TM\right)\)
\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)
\(\Leftrightarrow x+4=x^2+4x+4\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
KL....
\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)
\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)
\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}+2}\)
b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)
Để P = 1/2
thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{a}-2=2\)
\(\Leftrightarrow\sqrt{a}=4\)
\(\Leftrightarrow a=16\left(tm\right)\)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
Ta có \(c\ge\sqrt{ab}\Leftrightarrow c^2\ge ab\Leftrightarrow c^2-ab\ge0\Leftrightarrow c\left(c^2-ab\right)\ge0\Leftrightarrow c^3-abc\ge0\Leftrightarrow\left(c^3-abc\right)\left(a-b\right)\ge0\Leftrightarrow ac^3-a^2bc-bc^3+ab^2c\ge0\Leftrightarrow ab^2c+ac^3\ge a^2bc+bc^3\Leftrightarrow ac\left(b^2+c^2\right)\ge bc\left(a^2+c^2\right)\Leftrightarrow\dfrac{ac}{a^2+c^2}\ge\dfrac{bc}{b^2+c^2}\Leftrightarrow\dfrac{2ac}{a^2+c^2}\ge\dfrac{2bc}{b^2+c^2}\Leftrightarrow1+\dfrac{2ac}{a^2+c^2}\ge1+\dfrac{2bc}{b^2+c^2}\Leftrightarrow\dfrac{a^2+2ac+c^2}{a^2+c^2}\ge\dfrac{b^2+2bc+c^2}{b^2+c^2}\Leftrightarrow\dfrac{\left(a+c\right)^2}{a^2+c^2}\ge\dfrac{\left(b+c\right)^2}{b^2+c^2}\Leftrightarrow\dfrac{a+c}{\sqrt{a^2+c^2}}\ge\dfrac{b+c}{\sqrt{b^2+c^2}}\left(đpcm\right)\)
Cần chứng minh
(a + c)²(b² + c²) ≥ (b + c)²(a² + c²)
<=> 2c(a - b)(c² - ab) ≥ 0
Cái này đúng.