Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)
Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)
\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)
\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0
Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)
Cái phần CMR: \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\le3\left(b-2\right)\) phải là giả thiết chứ nhỉ ??
ĐỀ GỐC BÀI NÀY LÀ ĐỀ CỦA CHUYÊN HƯNG YÊN NHÉ, THẦY CẬU RA LẠI THÔI !!!!!
DO: \(a\ge1;b\ge2;c\ge3\Rightarrow a-1;b-2;c-3\ge0\)
ĐẶT: \(a-1=x;b-2=y;c-3=z\)
=> \(gt\Leftrightarrow\hept{\begin{cases}x;y;z\ge0\\x^2+y^2+z^2\le3y\end{cases}}\)
=> \(a=x+1;b=y+2;c=z+3\)
=> \(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
TA ÁP DỤNG 2 BĐT SAU: \(\hept{\begin{cases}\left(x+1\right)^2\le2\left(x^2+1\right)\\\left(z+3\right)^2\le4\left(z^2+3\right)\end{cases}}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{8}{4\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{4}{2\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{\left(1+2\right)^2}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\) (BĐT CAUCHY - SCHWARZ)
=> \(P\ge\frac{9}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\)
MÀ: \(x^2+z^2\le3y-y^2\) (gt)
=> \(P\ge\frac{9}{2\left(3y-y^2\right)}+\frac{4}{\left(y+2\right)^2}=\frac{9}{6y-2y^2}+\frac{4}{\left(y+2\right)^2}\)
TA SẼ CHỨNG MINH \(\frac{9}{6y-2y^2+8}+\frac{4}{\left(y+2\right)^2}\ge1\)
<=> \(\left(y-2\right)^2\left(2y^2+10y+9\right)\ge0\) (*)
(CHỖ NÀY CẬU QUY ĐỒNG MẪU SỐ, RÚT GỌN RỒI PHÂN TÍCH NHÂN TỬ SẼ RA ĐƯỢC NHƯ THẾ NÀY, MÌNH LÀM TẮT NHA)
DO: \(\hept{\begin{cases}\left(y-2\right)^2\ge0\forall y\\2y^2+10y+9\ge9>0\left(y\ge0\right)\end{cases}}\)
VẬY BĐT (*) LUÔN ĐÚNG !!!!!!
=> \(P\ge1\)
DẤU "=" XẢY RA <=> \(x=z=1;y=2\)
<=> \(a=2;b=4;c=4\)
ko dùng điều kiện :)
\(sigma\sqrt{\frac{1+a^2}{b+c}}\ge sigma\frac{a+1}{\sqrt{2\left(b+c\right)}}\ge sigma\frac{2\left(a+1\right)}{b+c+2}=sigma\left(\frac{2a^2}{ab+ca+2a}+\frac{2}{b+c+2}\right)\)
\(\ge\frac{2\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a+b+c\right)}+\frac{18}{2\left(a+b+c\right)+6}\)
\(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}+\frac{9}{a+b+c+3}=\frac{3\left(a+b+c\right)}{a+b+c+3}+\frac{9}{a+b+c+3}=3\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)