Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng Bđt Cô si ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng theo vế 2 bđt trên ta có:
\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu = khi a=b=c
b)Áp dụng Bđt Cô-si ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)
Cộng theo vế 3 bđt trên ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Đấu = khí a=b=c
\(3a^3+3b^3+3b^3+b^3\ge3\sqrt[3]{27a^3b^6}+b^3=9ab^2+b^3\ge9ab^2\)
Dấu "=" xảy ra khi \(a=b=0\)
\(\sum\dfrac{a}{\left(a^2+1\right)+2b+2}\le\sum\dfrac{a}{2\left(a+b+1\right)}=\dfrac{1}{2}\)
\(A=(-\infty;1]\cup[4;+\infty)\)
\(B=\left[-5;5\right]\)
\(A\cap B=\left[-5;1\right]\cup\left[4;5\right]\)
\(A\backslash B=(-\infty;-5)\cup\left(5;+\infty\right)\)
\(A\cup B=\left(-\infty;+\infty\right)\)
\(vp=\frac{a\left(1+b\right)+b\left(1+a\right)}{\left(1+a\right)\left(1+b\right)}=\frac{2ab+a+b}{1+ab+a+b}\)
\(\ge\frac{a+b}{1+ab+a+b}\)
\(\ge\frac{a+b}{1+a+b}\)
\(\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}}\)
\(\Leftrightarrow\frac{a+b}{2}\le\frac{\sqrt{2\left(a^2+b^2\right)}}{2}\)
\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Áp dụng BĐT Cauchy:
\(a^3+\dfrac{8}{125}+\dfrac{8}{125}\ge3\sqrt[3]{a^3.\dfrac{8^2}{125^2}}=\dfrac{12}{25}a\)
\(b^3+\dfrac{8}{125}+\dfrac{8}{125}\ge3\sqrt[3]{b^3.\dfrac{8^2}{125^2}}=\dfrac{12}{25}b\)
\(2c^3+2c^3+\dfrac{2}{125}+\dfrac{2}{125}+\dfrac{2}{125}+\dfrac{2}{125}\ge6\sqrt[6]{c^6.\dfrac{2^6}{125^4}}=\dfrac{12}{25}c\)
Cộng vế với vế ta được:
\(a^3+b^3+4c^3+\dfrac{8}{25}\ge\dfrac{12}{25}\left(a+b+c\right)=\dfrac{12}{25}\)
\(\Rightarrow a^3+b^3+4c^3\ge\dfrac{12}{25}-\dfrac{8}{25}=\dfrac{4}{25}\)
\(\Rightarrow P_{min}=\dfrac{4}{25}\) khi \(\left\{{}\begin{matrix}a=\dfrac{2}{5}\\b=\dfrac{2}{5}\\c=\dfrac{1}{5}\end{matrix}\right.\)
với a ,b \(\ge\)0 , áp dụng BĐT CÔSI ta có
a+b \(\ge\)2\(\sqrt{ab}\)
a)\(x -1 >5 ⇔ x > 1 ⇒ x^4 > x^3 > x^2 > x > 1 \)
\(⇒ 5x^4 > x^4 + x^3 + x^2 + x + 1 > 5 \)
\(⇒ 5x^4 (x-1) > (x-1)( x^4 + x^3 + x^2 + x + 1) = x^5 -1 > 5 (x-1) \)
b)\(x^5 + y^5 – x^4y – xy^4 = (x + y)(x^4 – x^3y + x^2y^2 – xy^3 + y^4) – xy(x^3 + y^3) \)
\(= (x + y) [( x^4 – x^3y+ x^2y^2 – xy^3 + y^4) – xy(x^2 – xy + y^2)] \)
\(= (x + y) [(x^4+2x^2y^2+y^4) - 2xy(x^2+y^2)] \)
\(= (x + y) (x - y)^2(x^2 + y^2) ≥ 0 \)
c)\(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} )^2\)
\(= 4(a + b + c) + 3 + 2\sqrt {4a + 1} \sqrt {4b + 1} + 2\sqrt {4a + 1} \sqrt {4c + 1} + 2\sqrt {4b + 1} \sqrt {4c + 1} \)
\( \le 4(a + b + c) + 3 + (4a + 1) + (4b + 1) + (4a + 1) + (4c + 1) + (4b + 1) + (4c + 1) \)
\(\le 12(a + b + c) + 9 \le 21 \le 25\)
Áp dụng bất đẳng thức AM - GM: \(1+a^3+b^3\ge3\sqrt[3]{1.a^3.b^3}=3ab\).