K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)

\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)

b: Ta có: |2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>x=-2

Thay x=-2 vào A, ta được:

\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)

c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)

=>x+3=24x+12

=>24x+12=x+3

=>23x=-9

hay x=-9/23

d: Để A<0 thì x+3<0

hay x<-3

21 tháng 8 2019

a) \(A=\left(x-3\right)^3-\left(x+1\right)^3+12x\left(x-1\right)\)

\(A=x^3-9x^2+27x-27-x^3-3x^2-3x-1+12x^2-12x\)

\(A=12x-28\)

b) Thay x vào biểu thức vừa rút gọn, ta có:

\(A=12x-28=12.\left(-\frac{2}{3}\right)-28=-36\)

c) \(12x-28=-16\)

\(\Leftrightarrow12x=-16+28\)

\(\Leftrightarrow12x=12\)

\(\Rightarrow x=1\)

a ) Rút gọn A

\(A=\left(x-3\right)^3-\left(x-1\right)^3+12\left(x-1\right)\)

\(A=x^3-9x^2+27x-27-x^3-3x^2-3x-1+12x^2-12x\)

\(A=12x-28\)

b) Tính giá trị A tại \(x=-\frac{2}{3}\)

Thay \(x=-\frac{2}{3}\)vào biểu thức A ta được 

\(A=12.\frac{-2}{3}-28\)

\(A=-8-28\)

\(A=-36\)

c) Tìm x để A = - 16

\(12x-8=-16\)

\(12x=-8\)

\(x=-\frac{8}{12}\)

Vậy ...............

Study well 

26 tháng 3 2020

\(A=\frac{12x^2}{x+3}\)

\(12x^2\ge0\forall x\Rightarrow A< 0\Leftrightarrow x+3< 0\)

\(\Leftrightarrow x< -3\)

~~

x2+6c+9(c ở đâu vậy bạn)

30 tháng 1 2019

a, A xác định

\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)

\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)

\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)

b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)

\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)

\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)

c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)

\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)

Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)

30 tháng 3 2019

Bài của Hùng rất thông minh

Đang định có cách khác mà dài hơn cách Hùng nên thui

^^ 2k5 kết bạn nhé