Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)
\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)
\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)
b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)
Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)
\(\text{x}=1\) (loại)
Vậy giá trị nguyên tập hợp x là:
x=-5;3;9
a, \(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)
\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)
=\(\left(\frac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x+2-x}{x+2}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}\)
\(=\frac{-3}{x-2}\)
b. Thay : x=-4
=>-3/x-2=-3/(-4)-2=1/2
câu a quy đồng mẫu lên: x^2-4=(x+2)(x-2). câu b thì thay vào. câu c toán 7 tự làm
\(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\) ĐKXĐ : \(x\ne\pm2\)
\(A=\left(\frac{2x}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4}{x+2}+\frac{5-x^2}{x+2}\right)\)
\(A=\left(\frac{2x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+5-x^2}{x+2}\right)\)
\(A=\frac{x-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1}\)
\(A=\frac{x-6}{x-2}\)
Câu 1 :
a, \(\frac{3}{x+3}-\frac{x-6}{x^2+3x}=\frac{3x-x+6}{x\left(x+3\right)}=\frac{2x+6}{x\left(x+3\right)}=\frac{2}{x}\)
b, \(\frac{2x^2-x}{x-1}+\frac{x+1}{1-x}+\frac{2-x^2}{x-1}=\frac{2x^2-x-x-1+2-x^2}{x-1}\)
\(=\frac{x^2-2x+1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
Bài 2 :
a, Với \(x\ne\pm2\)
\(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)
\(=\left(\frac{x+x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x+2-x}{x+2}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{-3}{x-2}\)
b, Thay x = -4 vào biểu thức trên ta được :
\(-\frac{3}{-4-2}=-\frac{3}{-6}=\frac{1}{2}\)
c, Để A \(\inℤ\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
Bằng 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000$
\(ĐK:\hept{\begin{cases}x+2\ne0\\x-2\ne0\end{cases}\Rightarrow x\ne\pm2}\)
a) \(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)
\(A=\left[\frac{x}{\left(x-2\right).\left(x+2\right)}+\frac{x-2}{\left(x-2\right).\left(x+2\right)}-\frac{2x+4}{\left(x-2\right).\left(x+2\right)}\right]:\left(\frac{2}{x+2}\right)\)
\(A=\frac{x+x-2-2x-4}{\left(x-2\right).\left(x+2\right)}\cdot\frac{x+2}{2}=\frac{-6}{\left(x-2\right).\left(x+2\right)}\cdot\frac{\left(x+2\right)}{2}=\frac{-6}{2.\left(x-2\right)}=-\frac{3}{x-2}\)
b) \(A=-\frac{3}{x-2}=\frac{-3}{-4-2}=\frac{-3}{-6}=\frac{1}{2}\)
c) để A thuộc Z => 3 chia hết cho x-2 =>.....(tự làm nha bn)
\(A=\dfrac{3x^2-9x+x-3+2}{x-3}\)
\(B=\dfrac{x^2\left(x+2\right)+5\left(x+2\right)}{\left(x+2\right)^2}=\dfrac{x^2+5}{x+2}=x-2+\dfrac{9}{x+2}\)
Để A và B cùng là số nguyên thì
\(\left\{{}\begin{matrix}x-3\in\left\{1;-1;2;-2\right\}\\x+2\in\left\{1;-1;3;-3;9;-9\right\}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x\in\left\{4;2;5;1\right\}\\x\in\left\{-1;-3;1;-5;7;-11\right\}\end{matrix}\right.\)
hay x=1
a) A=\(\frac{x^2-2x}{x^2-4x+4}\)=\(\frac{x^2-2x}{x^2-2.1.2x+2^2}\)=\(\frac{x\left(x-2\right)}{\left(x-2\right)^2}\)=\(\frac{x}{x-2}\)
b) \(x-2=0\) nên \(x\Rightarrow2\), ví dụ \(x=3\) thì \(A=\frac{3}{3-2}=\frac{3}{1}=3\)
\(\frac{x}{x-2}=\frac{x-2+2}{x-2}=1+\frac{2}{x-2}\)
Để A là số nguyên thì \(\frac{2}{x-2}\in Z\Rightarrow\left(x-2\right)\inƯ\left(2\right)\)
Giải ra