\(\frac{x+1}{\sqrt{x^4+x+1}-x^2}\)

Tính A khi x>0 và x là nghiệm của phươn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Ta có:

\(4a^2+a\sqrt{2}-\sqrt{2}=0\)

\(\Leftrightarrow2\sqrt{2}a^2+a-1=0\)

\(\Leftrightarrow a+1=2-2\sqrt{2}a^2\) thế vô ta được

\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{2-2\sqrt{2}a^2}{\sqrt{a^4+2-2\sqrt{2}a^2}-a^2}\)

\(=\frac{2-2\sqrt{2}a^2}{\sqrt{\left(\sqrt{2}-a^2\right)^2}-a^2}=\frac{\sqrt{2}\left(\sqrt{2}-2a^2\right)}{\sqrt{2}-2a^2}=\sqrt{2}\)

10 tháng 8 2017

Ta có:

\(4a^2+a\sqrt{2}-\sqrt{2}=0\)

\(\Leftrightarrow2\sqrt{2}a^2+a-1=0\)

\(\Leftrightarrow a+1=2-2\sqrt{2}a^2\) thế vô ta được

\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{2-2\sqrt{2}a^2}{\sqrt{a^4+2-2\sqrt{2}a^2}-a^2}\)

\(=\frac{2-2\sqrt{2}a^2}{\sqrt{\left(\sqrt{2}-a^2\right)^2}-a^2}=\frac{\sqrt{2}\left(\sqrt{2}-2a^2\right)}{\sqrt{2}-2a^2}=\sqrt{2}\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

17 tháng 10 2016

1/ Điều kiện xác định

\(\hept{\begin{cases}2IxI-1\ge0\\x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0,5orx\le-0,5\\x\le0\end{cases}}\Leftrightarrow x\le-0,5}\)

Bình phương 2 vế ta được

\(x^2=2IxI-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x=x^2+1\\2x=-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=-1\end{cases}}}\)

Vậy nghiệm pt là x = -1

2/ \(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\)

\(\ge2\sqrt{5\times180}+5=65\)

Đạt được khi x = 7

3/ \(\hept{\begin{cases}x\ge0\\-\sqrt{x}>-9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\\sqrt{x}< 9\end{cases}\Leftrightarrow0\le x< 81}\)

Có vô số giá trị thực x thỏa mãn cái đó

4/ \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)

\(\Leftrightarrow Ix-1I-Ix-2I=x-3\)

Tới đây thì đơn giản rồi b tự làm nốt nhé

17 tháng 10 2016

1 / 

đây thuộc phương trình , phần mình rất yếu 

IxI không phải là giá trị tuyệt đối của x đâu

2 /

giá trị nhỏ nhất của x = 2

nếu vậy , A = 10 + 180 = 190

nhưng đây là kết quả quá lớn , ta phải tiếp tục cho x lớn hơn nữa để có kết quả nhỏ hơn

3 /  ; 4 /

chịu