Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
B = \(\frac{1}{x+3}-\frac{x}{x-1}-\frac{4x}{x^2+2x-3}\)
=> B = \(\frac{x-1}{\left(x+3\right)\left(x-1\right)}-\frac{x\left(x+3\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4x}{\left(x+3\right)\left(x-1\right)}\)
=> B = \(\frac{\left(x-1\right)-x\left(x+3\right)-4x}{\left(x+3\right)\left(x-1\right)}\)
=> B = \(\frac{x-1-x^2-3x-4x}{\left(x+3\right)\left(x-1\right)}\)
=> B = \(\frac{-6x-1-x^2}{\left(x+3\right)\left(x-1\right)}\)
b) xem lại đề
a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)
\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)
\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x}{x+1}\)
MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ
\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)
\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)
\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)
\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)
Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)
\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)
\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)
a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
= \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)
<=> \(\frac{x^2+1}{x+1}+1>0\)
<=> \(\frac{x^2+x+2}{x+1}>0\)
Vì x2 + x + 2 >0 \(\forall x\)
=> A > 0 <=> x + 1 > 0 <=> x > -1
mk làm luôn
a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right).\)
=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
=\(\frac{\left(3x+3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}\)
=\(\frac{3x+3\sqrt{x}-1}{9\sqrt{x}-3}\)
=
a/ \(A=\frac{\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}}{1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}}\)
\(A=\frac{\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)-\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{8\sqrt{x}}{9x-1}}{1-\frac{3\sqrt{x}+1-3}{3\sqrt{x}+1}}\)
\(A=\frac{\frac{3x-4\sqrt{x}+1-3\sqrt{x}-1}{\left(3\sqrt{x}\right)^2-1}-\frac{8\sqrt{x}}{9x-1}}{1-1-\frac{3}{3\sqrt{x}+1}}\)
\(A=\frac{\frac{3x-7\sqrt{x}}{9x-1}-\frac{8\sqrt{x}}{9x-1}}{-\frac{3}{3\sqrt{x}+1}}\)
\(A=\frac{3x-7\sqrt{x}-8\sqrt{x}}{9x-1}\left(\frac{-\left(3\sqrt{x}+1\right)}{3}\right)\)
\(A=\frac{3x-15\sqrt{x}}{9x-1}\left(\frac{-3\sqrt{x}-1}{3}\right)\)
\(A=\frac{3\left(x-3\sqrt{x}\right)}{9x-1}\left(\frac{-3\sqrt{x}-1}{3}\right)\)
\(A=\frac{\left(x-3\sqrt{x}\right)\left(-3\sqrt{x}-1\right)}{9x-1}\)
\(A=\frac{3x\sqrt{x}+8x+3\sqrt{x}}{9x-1}\)
\(A=\frac{3x\sqrt{x}}{9x-1}+\frac{8x}{9x-1}+\frac{3\sqrt{x}}{9x-1}\)
\(A=\frac{x\sqrt{x}}{x-\frac{1}{3}}+\frac{8x}{9x-1}+\frac{\sqrt{x}}{x-\frac{1}{3}}\)
\(A=\frac{\sqrt{x}\left(x-1\right)}{x-\frac{1}{3}}+\frac{\frac{8}{3}x}{x-\frac{1}{3}}\)
\(A=\frac{\sqrt{x}\left(x-1\right)+\frac{8}{3}x}{x-\frac{1}{3}}\)
a) \(B=\frac{1}{x+3}+\frac{x}{x-1}-\frac{4x}{x^2+2x-3}=\frac{x-1}{x^2+2x-3}+\frac{x^2+3x}{x^2+2x-3}-\frac{4x}{x^2+2x-3}\)
\(\Leftrightarrow B=\frac{x-1+x^2+3x-4x}{x^2+2x-3}=\frac{x^2-1}{x^2+2x+1-4}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2-2^2}\)
\(\Leftrightarrow B=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{x+1}{x+3}\)
b) \(\frac{A-1}{B}=\frac{\frac{x-1}{x+3}-1}{\frac{x+1}{x+3}}=\frac{\frac{-4}{x+3}}{\frac{x+1}{x+3}}=\frac{-4}{x+1}\le\frac{1}{2}\Leftrightarrow-8\le x+1\Leftrightarrow x\ge-9\)