Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKCĐ: \(x\ge0;x\ne9,x\ne4\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ \)
\(=\left(\frac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-1\right):\left(\frac{\left(3-\sqrt{x}\right).\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x+3}\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=-\frac{3}{\sqrt{x}+3}:\left(-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)=-\frac{3}{\sqrt{x}+3}:\frac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}=\frac{3}{\sqrt{x}-2}\)
b, \(A\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)
Nếu x không là số chính phương thì \(\sqrt{x}\)là số vô tỉ thì \(\sqrt{x}-2\)là số vô tỉ\(\Rightarrow A=\frac{3}{\sqrt{x}-2}\)là số vô tỉ
Nếu x là số chính phương thì \(\sqrt{x}\)là số nguyên thì \(\sqrt{x}-2\inℤ\Rightarrow\sqrt{x}-2\inƯ\left(3\right)\Rightarrow\sqrt{x}-2\in\left\{\pm1;\pm3\right\}\Rightarrow\sqrt{x}\in\left\{1;3;5\right\}\)\(\Rightarrow x\in\left\{1;9;25\right\}\)
Mà theo ĐKXĐ có x khác 9 => \(x\in\left\{1,25\right\}\)
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
xin lỗi các bạn nha mk chép sai đề ở phần thứ 3 phần mẫu mk xin sửa lại \(\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)
Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 |
x | 8 | 4 (ktm) | 25 | 1 |
Vậy ....
điều kiện \(x\ge0\)và x khác 1/4
Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)
=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)
đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)
<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0
vậy Q>1/2 khi x>=0 và x khác 1/4
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
a) ĐK : x ≥ 0 ; x ≠ 2 ; x ≠ 3
A= \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
=\(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\text{}\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-1}{\sqrt{x}-3}\)
Vậy...
b)Ta có A<-1
⇒\(\frac{-1}{\sqrt{x}-3}\) <-1
⇒\(\frac{-1}{\sqrt{x}-3}\) +1<0
⇒\(\frac{\sqrt{x}-4}{\sqrt{x}-3}\) <0
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\)
⇒9< x <16
Vậy...
c) Ta có A = \(\frac{-1}{\sqrt{x}-3}\)
⇒2A=\(\frac{-2}{\sqrt{x}-3}\)
Để 2A ∈ Z thì \(\frac{-2}{\sqrt{x}-3}\) ∈ Z
⇒\(\sqrt{x}-3\) ∈ Ư(-2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng
Vậy...
OK!!! đó bạn