Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)
hay \(x\in\left\{16;4;25;1;49\right\}\)
Để N có giá trị nguyên thì \(9⋮\sqrt{x-5}\)
Ta có : \(\sqrt{x-5}\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x-5\in\left\{1;9;81\right\}\)
\(\Rightarrow x\in\left\{6;14;86\right\}\)
Vậy \(x\in\left\{6;14;96\right\}\)thì N có giá trị nguyên
\(D=\frac{2x-3}{x-1}=\frac{2x-2-1}{x-1}=\frac{2.\left(x-1\right)-1}{x-1}=\frac{2.\left(x-1\right)}{x-1}-\frac{1}{x-1}=2-\frac{1}{x-1}\)
Để D nguyên thì \(\frac{1}{x-1}\)nguyên
=> 1 chia hết cho x - 1
=> \(x-1\inƯ\left(1\right)\)
=> \(x-1\in\left\{1;-1\right\}\)
=> \(x\in\left\{2;0\right\}\)
Đặt UCLN(6n+1,2n-1)=d
2n-1 chia het cho d => 6n+1 chia het cho d
[(6n+5) - (6n+3)] chia het cho d
2 chia het cho d nhung 6n+5 va 6n+3 le
=> d=1.
Vậy n=1.
Để \(A=\frac{6n+5}{2n-1}\)có giá trị là số nguyên
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
Do \(3\left(2n-1\right)⋮2n-1\)
\(\Leftrightarrow8⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(8\right)\)
\(\Leftrightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2 | -1/2 | 5/2 | -3/2 | 9/2 | -7/2 |
Do n cần tìm là số nguyên
=> n = { 1 ; 0 }
Mình ko ghi bằng kí hiệu toán đc nha tự sửa nha
Để D thuộc Z
2x-3 chia hết cho x-1
=>(2x-2)-1 chia hết cho x-1
mà 2x-2 chia hết cho x-1 ( x thuộc Z)
nên 1 chia hết cho x-1
=>x-1 thuộc ước của 1
=>x-1 thuộc 1;-1
=>x-1=1
x-1=-1
=>x=2
x=0
Vậy để D thuộc Z thì x=2 hoặc x=0
Ta có : D=\(\dfrac{2x-3}{x-1}=\dfrac{2\left(x-1\right)}{x-1}-\dfrac{1}{x-1}=2-\dfrac{1}{x-1}\)
Để D nhận giá trị nguyên thì\(1⋮x-1\Rightarrow x-1\inƯ_{\left(1\right)}=\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{0,2\right\}\)(Thỏa mãn \(x\in Z\))
Vậy để D nhận giá trị nguyên thì \(x\in\left\{0;2\right\}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
\(A=1+\frac{4}{\sqrt{x}-3}\)
để \(A\in Z\)thì \(\frac{4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\)
đến đây xét từng trường hợp rồi đối chiếu điều kiện là xong