Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{12n+1}{2n+3}\) là một phân số khi: \(12n+1\in Z,2n+3\in Z\) và \(2n+3\ne0\)
\(\Leftrightarrow n\in Z\) và \(n\ne-1,5\)
\(b,A=\dfrac{12n+1}{2n+3}=-6\dfrac{17}{2n+3}\)
A là số nguyên khi \(2n+3\inƯ\left(17\right)\Leftrightarrow2n+3\in\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow n\in\left\{-10;-2;-1;7\right\}\)
Để \(A\)là số nguyên
\(\Rightarrow n-2⋮n+3\)
Mà \(n-2=n+5-3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n+2\in\left\{-2;2;1;-4;4\right\}\)
a, `=> 2n + 3 ne 0 => 2n ne -3 => n ne -3/2`.
b, `=> 12n+1 vdots 2n+3`
`=> 12n + 18 - 17 vdots 2n + 3`
`=> 17 vdots 2n + 3`
`=> 2n + 3 in Ư(17)`
`=> 2n+3 in {+-1, +-17}`
`=> n in{-1, -2, -10, 7}`.
a: Để A là phân số thì 2n+3<>0
hay n<>-3/2
b: Để A nguyên thì \(2n+3\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{-1;-2;7;-10\right\}\)
\(a,\Rightarrow2n+3\ne0\Rightarrow n\ne-\dfrac{2}{3}\\ b,A\in Z\Rightarrow A=\dfrac{6\left(2n+3\right)-17}{2n+3}=6-\dfrac{17}{2n+3}\in Z\\ \Rightarrow2n+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\\ \Rightarrow2n\in\left\{-20;-4;-2;14\right\}\\ \Rightarrow n\in\left\{-10;-2;-1;7\right\}\left(tm\right)\)
a)n∈Z,n≠2
b)để A là số nguyên thì 2-n∈{1;-1}
*)2-n=1
n=1
*)2-n=-1
n=3
b, \(A=\dfrac{2n+2}{2n-4}=\dfrac{2n-4+6}{2n-4}=\dfrac{6}{2n-4}\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
a) Để A là 1 phân số thì
n + 4 \(\ne0\)
=> n \(\ne-4\)
b) A là 1 số nguyên
=> n - 3 chia hết cho n + 4
n + 4 - 7 chia hết cho n + 4
Mà n + 4 chia hết cho n + 4
=> 7 chia hết cho n + 4
n + 4 thuộc Ư(7) = {-7 ; -1;1;7}
n thuộc {-11 ; -5 ; -3 ; 3}
a. Để A là một phân số thì:
\(n+4\ne0\)
\(\Rightarrow n\ne0\) -4
b. A là một số nguyên
\(\Rightarrow n-3⋮n+4\)
n + 4 - 7 \(⋮\) n + 4
Mà n + 4 \(⋮\) n + 4
\(n+4\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(n\in\left\{-11;-5;-3;3\right\}\)