\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)(Tổng hai số bất kì trong ba số khác 0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 5 2019

\(A=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1-3\)

\(A=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)

\(A=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)-3\)

\(A=7.\frac{7}{10}-3=\frac{49}{10}-3=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Đề sai

4 tháng 5 2019

\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

    \(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)

    \(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)

    \(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

     \(=7.\frac{7}{10}-3=\frac{49}{10}-3=\frac{19}{10}\)

Ta có:\(1\frac{8}{11}=\frac{19}{11}< \frac{19}{10}\left(đpcm\right)\)

V...

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

24 tháng 2 2019

Xét

 \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=7\cdot\frac{7}{10}=\frac{49}{10}\)

\(\Leftrightarrow\frac{a+b}{a+b}+\frac{c}{a+b}+\frac{a+c}{a+c}+\frac{b}{a+c}+\frac{b+c}{b+c}+\frac{a}{b+c}=\frac{49}{10}\)

\(3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{49}{10}\Leftrightarrow S=\frac{19}{10}\)

Ta có:   \(1\frac{8}{11}=\frac{19}{11}\)

vì 19=19 ,\(\frac{1}{11}< \frac{1}{10}\)nên \(\frac{19}{11}< \frac{19}{10}\)

Vậy \(S>1\frac{8}{11}\)

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

3 tháng 5 2015

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

                                               \(=\frac{7}{b+c}-\frac{b+c}{b+c}+\frac{7}{c+a}-\frac{c+a}{c+a}+\frac{7}{a+b}-\frac{a+b}{a+b}\)

                                                \(=\frac{7}{b+c}-1+\frac{7}{c+a}-1+\frac{7}{a+b}-1\)

                                                \(=\frac{7}{b+c}+\frac{7}{c+a}+\frac{7}{a+b}-3\)  

                                                \(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\) \(.Thay\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)

                                               \(\Rightarrow S=7.\frac{7}{10}-3=\frac{49}{10}-3=1\frac{9}{10}>1\frac{8}{11}\)

                                              Vậy\(S>1\frac{8}{11}\)

24 tháng 2 2017

S>19/11

100% luôn

15 tháng 3 2018

thà chết đi còn hơn làm cái đống này mất gianroi

24 tháng 1 2017

TA có 

\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}\)

\(=\frac{ab+ac-ab-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)

vì a>b => a-b > 0 => c(a-b) > 0 

=> \(\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)

\(=>\frac{a}{b}-\frac{a+c}{b+c}>0\)

\(=>\frac{a}{b}>\frac{a+c}{b+c}\)

=> đpcm

b)   Ta có a+b < a+b+c ; b+c < a+b+c ; c+a < a+b+c

\(=>\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)        (1)

Lại có 

Áp dùng câu a ta có a< a+b ; b< b+c ; c<c+a

=> \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)     (2) 

Từ (1) và (2) => dpcm

25 tháng 1 2017

- Cậu ơi, đpcm là cái gì???

12 tháng 2 2017

1 ) Vì b + c + a > b => \(\frac{a}{b}>\frac{a}{b+c+a}\)

2 ) Ta có :

\(\frac{a}{b}>\frac{a}{b+c+a}\) 

\(\frac{b}{c}>\frac{b}{b+c+a}\)

\(\frac{c}{a}>\frac{c}{b+c+a}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{b+c+a}=\frac{a+b+c}{b+c+a}=1\) (ddpcm)