K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

A thuộc Z

<=>  3 chia hết cho n - 2

<=> n - 2 thuộc Ư(3) = {-3; -1; 1; 3}

<=> n thuộc {-1; 1; 3; 5}

B thuộc Z

<=> n chia hết cho n - 1

<=> n - 1 + 1 chia hết cho n - 1

<=>  1 chia hết cho n - 1

<=> n - 1 thuộc Ư(1) = {-1;1}

<=> n thuộc {0; 2}.

16 tháng 2 2016

Bạn nào làm nhanh và đúng nhất mình sẽ đúng cho!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

24 tháng 12 2016

A=n+3 chia hết cho n+1

mà n+3 =(n+1)+2

vì n+1 chia hết cho n+1

nên A chia hết cho n+1 

khi2chia hết cho n+1

suy ra n+1 thuộc ước của 2

suy ra n+1 thuộc {1;2}

mà n thuộc Z  Suy ra n thuộc { 0;1}

Câu 2 dựa theo cách trên mà tự làm 

24 tháng 12 2016

\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)

Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}

n + 1-11-22
n-20-31

\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)

Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}

n - 41-117-17
n5321-13
18 tháng 8 2016

\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)

=>n-2 thuộc Ư(3)={1;3;-1;-3}

=>n thuoc {3;5;1;-1}

b) A có GTLN khi n lớn nhất =>n=5

Câu b không chắc chắn

13 tháng 2 2020

\(B=\frac{n+3}{n-4}=\frac{n-4+7}{n-4}=\frac{n-4}{n-4}+\frac{7}{n-4}=1+\frac{7}{n-4}\)

=> n-4\(\in\)Ư(7)={-1,-7,1,7}

=> n\(\in\){3,-3,5,11}

\(C=\frac{2n+1}{2n-3}=\frac{2n-3+4}{2n-3}=\frac{2n-3}{2n-3}+\frac{4}{2n-3}=1+\frac{4}{2n-3}\)

=> 2n-3 \(\in\)Ư(4)={-1,-2,-4,1,2,4}

=> n\(\in\){1,2}

13 tháng 2 2020

Trl 

-Bạn đó làm đúng rồi nhé ~!

Hok tốt 

nhé bạn

14 tháng 8 2021

A nguyên <=> 3  ⋮ n - 2

=> n - 2 thuộc Ư(3)

=> n - 2 thuộc {-1;1;-3;3}

=> n thuộc {1;3;-1;5}

B nguyên <=> n ⋮ n + 1

=> n + 1 - 1 ⋮ n + 1

=> 1 ⋮ n + 1

=> như a

14 tháng 8 2021

ĐK : \(n\ne2\)

\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n - 21-13-3
n315-1

ĐK : \(n\ne-1\)

\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 11-1
n0-2
18 tháng 8 2018

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

18 tháng 8 2018

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời