\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100},CMR:\frac{3}{5}< A< \frac{31}{40}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

tí mình giải bây giơ mình di có việc

24 tháng 7 2018

Bn giải giúp mik đi

13 tháng 8 2016

\(A=\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Chia A làm 2 phần,mỗi phân 25 số hạng.

\(A>\frac{25.1}{75}+\frac{25.1}{100}\)

\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

Bé hơn em làm tương tự có điều để nguyên cả 50 p/số.

Chúc em học tốt^^

13 tháng 8 2016

bạn có thể giải cụ thể hơn cho mình được ko ?

mình chả hiểu gì cả

15 tháng 11 2016

chịu thui

chúc bn học gioi!

nhaE@@

Toán lớp 7        bye mk đi hc đây hihi

 $$$$   

21 tháng 3 2017

Ta có : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)

\(\frac{1}{3}+\)( \(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\)) \(+\)( \(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\) ) \(< \)\(\frac{1}{3}+\)( \(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\)\(+\)( \(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\)\(\frac{1}{2}\)

Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)

12 tháng 8 2019

Biến đổi vp của đẳng thức :

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right]\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)