\(\frac{1}{1^2}+\frac{1}{2^2}+......+\frac{1}{50^2}\)Chưng minh rang a<2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

A=1+[\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)

ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)

=>A<1+\(\left[\frac{1}{1.2}+.........+\frac{1}{49.50}\right]\)

=>A<1+\(\left[\frac{1}{1}-\frac{1}{50}\right]\)

=>A<1+\(\frac{49}{50}\)

=>A<\(\frac{99}{50}\) <2

=>A<2

K MÌNH NHA BÀI NÀY MÌNH GHI MỎI TAY LẮM

22 tháng 4 2016

A=\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{50^2}\)

A<\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49\cdot50}\)

A<1+\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

A<1+\(\left(1-\frac{1}{50}\right)\)

A<1+\(\frac{49}{50}\)

=>A<2

14 tháng 4 2016

\(A<\frac{1}{1\cdot2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49\cdot50}\)
          \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
          \(=1-\frac{1}{50}<1<2\)

13 tháng 4 2016

mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50

A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)

A<1-1/50

mà 1/50>0=>1-1/50<1<2

A<1-1/50<1<2

A<2

chúc học tốt

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

28 tháng 4 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

         

10 tháng 5 2017

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}.\)

\(A=1+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+.......+\frac{1}{50\cdot50}\)

\(< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{49\cdot50}.\)

\(\Rightarrow1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1+1-\frac{1}{50}< 2\)

=>A<2

ok xong

12 tháng 6 2020

A = \(\frac{1}{1^2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)\(\frac{1}{4^2}\) + .... + \(\frac{1}{50^2}\)

A = 1 + \(\frac{1}{2.2}\)\(\frac{1}{3.3}\)\(\frac{1}{4.4}\)+ ...... + \(\frac{1}{50.50}\)< 1 + \(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ...... + \(\frac{1}{49.50}\)

A < 1 + ( 1 - \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...... + \(\frac{1}{49}\)\(\frac{1}{50}\))

A < 1 + ( 1 - \(\frac{1}{50}\))

A < 1 + 1 - \(\frac{1}{50}\)

A < 2 - \(\frac{1}{50}\)

=> A < 2

4 tháng 5 2016

A = 1/2.2 + 1/3.3 +......+ 1/50.50

A < 1/1.2 + 1/2.3 +......+ 1/49.50

A < 1 - 1/2 + 1/2 - 1/3 +.....+ 1/49 - 1/50

A < 1 - 1/50

A < 49/50 < 3/4 

=> A < 3/4 (đpcm)

5 tháng 5 2016

Hình như bạn Killua giải sai thì phải.. 49/50 > 3/4 chứ

Theo mình thì bài này nên giữ nguyên phân số 1/2^2( vì nó bằng 1/4)

Xét : B = 1/3^2 + 1/4^2 +...+ 1/50^2

       => B < 1/2.3 + 1/3.4 +...+ 1/49.50

       => B<  1/2-1/3+1/3-1/4+...+1/49-1/50

       => B < 1/2-1/50 < 1/2

Suy ra A < 1/2^2 + 1/2 = 3/4 

Vậy A< 3/4

4 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath

4 tháng 1 2018

A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)

A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)

=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)

=\(1+1-\frac{1}{50}\)

=\(2-\frac{1}{50}\)\(< 2\)

\(\Rightarrow A< 2\)