Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)
\(=1-\frac{1}{99}=\frac{98}{99}< 1\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Vậy \(\frac{49}{100}< A< 1\)
Giải
\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{100}{100}=1\)
Vậy A < 1 (đpcm)
A= 1/100x100+1/101x101+..........+1/199x199
Vì 1/100x100<99x100
1/101x101<100x101
...........
1/199x199 < 1/198x199
=) A< 1/99x100+1/100x101+...+1/198x199
A<1/99-1/100+1/100-1/101+.....+1/198-199
A<100/19701=0,0050....
Mà 1/100=0,01
=> A<1/100
K đúng nhé