\(A=\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

Ta có

A = \(\dfrac{1+7+7^2+7^3+...+7^{11}}{1+7+7^2+7^3+...+7^{10}}\)

Đặt C = 1 + 7 + 72 + 73+...+711

7C = 7 + 72 + 73 + ... + 711 + 712

=> 6C = 712 - 1

C = \(\dfrac{7^{12}-1}{6}\)

Đặt D = 1 + 7 + 72 + 73+...+710

7D = 7 + 72 + 73 + ... + 710 + 711

=> 6D = \(7^{11}-1\)

D = \(\dfrac{7^{11}-1}{6}\)

=> A = \(\dfrac{\dfrac{7^{12}-1}{6}}{\dfrac{7^{11}-1}{6}}\)

A = \(\dfrac{7^{12}-1}{6}\) : \(\dfrac{7^{11}-1}{6}\)

A = \(\dfrac{7^{12}-1}{6}.\dfrac{6}{7^{11}-1}\)

A = \(\dfrac{7^{12}-1}{7^{11}-1}\) = 7, 000000003

Lại có:

B = \(\dfrac{1+3+3^2+3^3+...+3^{11}}{1+3+3^2+3^3+...+3^{10}}\)\

Đặt H = \(1+3+3^2+3^3+...+3^{11}\)

3H = \(3+3^2+3^3+...+3^{12}\)

=> 2H = \(3^{12}-1\)

H = \(\dfrac{3^{12}-1}{2}\)

Đặt Q = \(1+3+3^2+3^3+...+3^{10}\)

3Q = \(3+3^2+3^3+...+3^{10}+3^{11}\)

=> 2Q = \(3^{11}-1\)

Q = \(\dfrac{3^{11}-1}{2}\)

=> B = \(\dfrac{\dfrac{3^{12}-1}{2}}{\dfrac{3^{11}-1}{2}}\)

B = \(\dfrac{3^{12}-1}{2}:\dfrac{3^{11}-1}{2}\)

B = \(\dfrac{3^{12}-1}{2}.\dfrac{2}{3^{11}-1}\)

B = \(\dfrac{3^{12}-1}{3^{11}-1}\)

B = 3, 00001129

Vì 7, 000000003 > 3, 00001129

=> A > B

Vậy A > B

15 tháng 5 2017

Bài này đang làm dở thấy có ng` làm r nên thôi ak

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

a: \(=\dfrac{4\cdot2+4\cdot9}{55}+\dfrac{5}{6}=\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{49}{30}\)

b: \(=\dfrac{3}{2}\cdot\dfrac{3}{5}-\left(\dfrac{3}{7}+\dfrac{3}{20}\right)\cdot\dfrac{10}{3}\)

\(=\dfrac{9}{10}-\dfrac{81}{140}\cdot\dfrac{10}{3}\)

\(=\dfrac{9}{10}-\dfrac{27}{14}=\dfrac{-36}{35}\)

c: \(=15+\dfrac{3}{13}-3-\dfrac{4}{7}-8-\dfrac{3}{13}\)

\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)

d: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=5\)

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

12 tháng 8 2017

a) Hình như nhầm đề thì phải :v

\(P=\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{6}{11}}\)

\(=\dfrac{\dfrac{5}{12}+\dfrac{5}{11}}{\dfrac{5}{12}+\dfrac{5}{11}}=1\)

b) \(Q=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(Q=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(0,125-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(Q=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)

\(Q=\dfrac{1}{3}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}\right)}=\dfrac{1}{3}+\dfrac{1}{\dfrac{3}{2}}\)

\(Q=\dfrac{1}{3}+\dfrac{2}{3}=1\)

12 tháng 8 2017

a,\(P=\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}=\dfrac{\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right).132}{\left(\dfrac{5}{12}+1-\dfrac{7}{11}\right).132}=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)

b, Ta có : 0,125 = \(\dfrac{1}{8}\) ; 0,375 = \(\dfrac{3}{8}\) ; 0,2 = \(\dfrac{1}{5}\) ; 0,5 = \(\dfrac{3}{6}\)

\(Q=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{3}{6}-\dfrac{3}{10}}\)

\(Q=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\cdot\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{2\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}{3\cdot\left(\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{10}\right)}\)

\(Q=\dfrac{1}{3}+\dfrac{2}{3}=1\)

a: \(=\dfrac{5\cdot\left(8-6\right)}{10}=\dfrac{5\cdot2}{10}=1\)

b: \(\dfrac{\left(-4\right)^2}{5}=\dfrac{16}{5}\)

\(B=\dfrac{3}{7}-\dfrac{1}{5}-\dfrac{3}{7}=-\dfrac{1}{5}\)

c: \(C=\left(6-2.8\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\)

\(=5\cdot2-\dfrac{32}{5}=10-\dfrac{32}{5}=\dfrac{18}{5}\)

d: \(D=\left(\dfrac{-5}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{27}{24}\cdot\dfrac{-8}{17}=\dfrac{-9}{8}\cdot\dfrac{8}{17}=\dfrac{-9}{17}\)

18 tháng 7 2017

a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)

\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)

\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)

\(=4-1\dfrac{3}{4}\)

\(=3\dfrac{3}{4}\)

18 tháng 7 2017

b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)

\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)

\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)

\(=4-2\dfrac{3}{7}\)

\(=2\dfrac{3}{7}\)

CÁCH 1 : A = \(\dfrac{235}{11}-\left(\dfrac{8}{5}+\dfrac{81}{11}\right)\)

A = \(\dfrac{235}{11}-\left(\dfrac{88}{55}+\dfrac{405}{55}\right)\)

A = \(\dfrac{235}{11}-\dfrac{493}{55}\)

A = \(\dfrac{1175}{55}+\dfrac{493}{55}\)

A = \(\dfrac{1668}{55}\)

26 tháng 7 2017

a, \(4\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)

\(=\left(-\dfrac{1}{2}\right)\left[\left(4\times-\dfrac{1}{2}\right)-\left(2\times-\dfrac{1}{2}\right)+3\right]+1\)

\(=\left(-\dfrac{1}{2}\right)\left(-2+1+3\right)+1\)

\(=\left(-\dfrac{1}{2}\right)2+1\)

\(=-1+1\)

\(=0\)

@Trịnh Thị Thảo Nhi

29 tháng 4 2018

a, 4×(−12)3−2×(−12)2+3×(−12)+14×(−12)3−2×(−12)2+3×(−12)+1

=(−12)[(4×−12)−(2×−12)+3]+1=(−12)[(4×−12)−(2×−12)+3]+1

=(−12)(−2+1+3)+1=(−12)(−2+1+3)+1

=(−12)2+1=(−12)2+1

=−1+1=−1+1

=0=0