K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2015}}\)

\(\Rightarrow5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{2014}}\)

\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2015}}\right)\)

\(\Rightarrow4A=1-\dfrac{1}{5^{2015}}\)

\(\Rightarrow A=\dfrac{1}{4}-\dfrac{1}{5^{2015}.4}< \dfrac{1}{4}\)

\(\Rightarrowđpcm\)

21 tháng 7 2017

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\)

\(\Rightarrow5A=5\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\)

\(\Rightarrow5A=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\)

\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\)

\(\Rightarrow4A=1-\dfrac{1}{5^{2015}}\)

\(\Rightarrow A=\dfrac{1}{4}-\dfrac{1}{5^{2015}.4}\)

\(\Rightarrow A< \dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:
$M=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}$

$5M=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}$

$\Rightarrow 4M=5M-M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}$
$4M+\frac{2014}{5^{2014}}=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}$

$5(4M+\frac{2014}{5^{2014}})=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}$

$\Rightarrow 4(4M+\frac{2014}{5^{2014}})=5-\frac{1}{5^{2013}}$

$M=\frac{5}{16}-\frac{1}{16.5^{2013}-\frac{2014}{4.5^{2014}}$

6 tháng 5 2022

a) \(A=2A-A\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)

\(=1-\dfrac{1}{2^{2022}}\)

b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)

\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)

 

6 tháng 5 2022

a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )

23 tháng 3 2017

1,

đặt A= \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\)

2A=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\)

2A-A=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+....+\(\dfrac{1}{2015}\)+\(\dfrac{1}{2016}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+....+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))

A=1-\(\dfrac{1}{2017}\)

A=\(\dfrac{2016}{2017}\)

vậy A=\(\dfrac{2016}{2017}\)

23 tháng 3 2017

Bạn ơi hnhf như đề bài phải là tính \(^{\dfrac{a}{b}}\)chứ k thì làm sao mak tính đc phần b

31 tháng 3 2017

A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\)

5A=\(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+...+\dfrac{5}{5^{2014}}\)

5A=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\)

5A-A=\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\right)\)4A=\(1-\dfrac{1}{5^{2014}}\)

4A=\(\dfrac{5^{2014}-1}{5^{2014}}\)

A=\(\dfrac{5^{2014}-1}{5^{2014}}:4\)

A=\(\dfrac{5^{2014}-1}{5^{2014}}.\dfrac{1}{4}\)

\(\Rightarrow\)A<\(\dfrac{1}{4}\)

31 tháng 3 2017

Ta có:

A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\)

\(\Rightarrow\) 5A = 5\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\)

\(\Rightarrow\) 5A = \(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+....+\dfrac{5}{5^{2014}}\)

\(\Rightarrow\) 5A = \(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\)

\(\Rightarrow\)\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\right)\)-\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\) = 5A - A

\(\Rightarrow\)4A= 1 - \(\dfrac{1}{5^{2014}}\)

\(\Rightarrow\) A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4

Vậy A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4

\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)

\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

=>B<1

=>A>B