\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{100}\)

CMR: A>...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

\(A=\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+....+\dfrac{1}{100}\)

\(A>\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+....+\dfrac{1}{100}\)

( Từ \(\dfrac{1}{100}\) đến \(\dfrac{1}{100}\) có 90 số )

\(A>\dfrac{1}{10}+\dfrac{1}{100}.90\)

\(\Rightarrow A>1\)

13 tháng 3 2017

\(A=\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{100}\)

\(A>\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\)

( Từ \(\dfrac{1}{100}\Rightarrow\dfrac{1}{100}\) có 90 số )

\(A>\dfrac{1}{10}+\dfrac{1}{100}.90\)

\(\Rightarrow A>1\)

18 tháng 3 2018

A = \(\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\)

\(\dfrac{1}{10}+\left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)=\dfrac{1}{10}+\dfrac{90}{100}=1\).

18 tháng 3 2018

Ở phần cuối trong ngoặc có '90 phân số'.

a. ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12

b, A =(1/101+1/102+....+1/150)+(1/151+1/152+.....+1/200)
A>1/150.50+1/200.50=1/3+1/4=7/12
b tách A thành bốn nhóm rồi cũng làm như trên,ta có
A>25/125+25/150+25/175+25/200=(1/5+1/6+1/7)+1/8
=107/210+1/8>1/2+1/8=5/8

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

8 tháng 4 2017

câu 3 tôi làm đc đó

23 tháng 4 2017

a) Đặt :

\(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.................+\dfrac{1}{100!}\)

Ta thấy :

\(\dfrac{1}{2!}=\dfrac{1}{1.2}\)

\(\dfrac{1}{3!}=\dfrac{1}{1.2.3}\)

\(\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4}\)

.....................................

\(\dfrac{1}{100!}=\dfrac{1}{1.2.3..........100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\rightarrowđpcm\)

b) Đặt :

\(B=\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+.............+\dfrac{9}{1000!}\)

Ta thấy :

\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)

\(\dfrac{9}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)

...................................................

\(\dfrac{9}{1000!}< \dfrac{1000-1}{1000!}=\dfrac{1}{999!}-\dfrac{1}{1000!}\)

\(\Rightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+............+\dfrac{1}{999!}-\dfrac{1}{1000!}\)

\(B< \dfrac{1}{9!}-\dfrac{1}{1000!}\)

\(\Rightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)

~ Chúc bn học tốt ~

6 tháng 4 2017

mọi người thật là nhẫn tâm

chẳng ai giúp mk

TRỜI ƠI!!! AI MS LÀ BN BÈ THỰC SỰkhocroi

7 tháng 4 2017

Ko cs đứa mô trả lời chứ chi

Loại bn bè vs mấy ng chỉ là giả tạo thôi

16 tháng 3 2018

a, Ta có :

\(\dfrac{1}{6}< \dfrac{1}{5}\)

\(\dfrac{1}{7}< \dfrac{1}{5}\)

.................

\(\dfrac{1}{9}< \dfrac{1}{5}\)

\(\dfrac{1}{10}=\dfrac{1}{10}\)

\(\dfrac{1}{11}< \dfrac{1}{10}\)

..................

\(\dfrac{1}{17}< \dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)

\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)

\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)

\(\Leftrightarrow A< 2\left(đpcm\right)\)

b/ Ta có :

\(\dfrac{1}{11}>\dfrac{1}{30}\)

\(\dfrac{1}{12}>\dfrac{1}{30}\)

...............

\(\dfrac{1}{29}>\dfrac{1}{30}\)

\(\dfrac{1}{30}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)

\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)

\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)

9 tháng 4 2017

cau 1

de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat

suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong

suy ra 4a-23=1

suy ra 4a=1+23=24

suy ra a=24 chia 4=6

vay de a nho nhat thi a=6