Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
a: Xét ΔABC có \(AC^2=BA^2+BC^2\)
nên ΔBAC vuông tại B
b: Xét ΔBAD vuông tại B và ΔEAD vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
Do đó: ΔBAD=ΔEAD
Suy ra: DB=DE
c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đó: ΔBDF=ΔEDC
Suy ra: DF=DC
mà DC>DE
nên DF>DE
a) Ta có:
a/b < c/d
=> a/b . d/c < c/d . d/c
=> ad/bc < 1
=> ad < 1.bc
=> ad < bc ( đpcm)
b) Ta có: ad < bc
=> ad + ab < bc + ab
=> a.(b + d) < b.(a + c)
=> a/b < a+c/b+d (1)
Ta có: ad < bc
=> ad + cd < bc + cd
=> d.(a + c) < c.(b + d)
=> a+c/b+d < c/d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d ( đpcm)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Rightarrow ad< bc\)
b) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
\(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1;\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d};\frac{a-b}{b}=\frac{c-d}{d}\)
a) \(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)(đúng)
b)\(\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)(đúng)