K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

cx thành x nha ae

19 tháng 11 2016

Áp dụng bđt bunhiacopxki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

dấu "=" xảy ra \(< =>ay=bx< =>\frac{a}{x}=\frac{b}{y}\)
 

Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Leftrightarrow ay=bx\)

hay \(\dfrac{a}{x}=\dfrac{b}{y}\)

Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Leftrightarrow ay-bx=0\)

\(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{b}=\dfrac{x}{y}\)

10 tháng 9 2018

Bài 1:

Ta có:

\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Rightarrow2\left(a^2+b^2\right)-\left(a-b\right)^2=0\)

\(\Rightarrow2a^2+2b^2-\left(a^2-2ab+b^2\right)=0\)

\(\Rightarrow2a^2+2b^2-a^2+2ab-b^2=0\)

\(\Rightarrow a^2+2ab+b^2=0\)

\(\Rightarrow\left(a+b\right)^2=0\)

\(\Rightarrow a+b=0\)

Vì hai số đối nhau là hai số có tổng bằng 0

Vậy a và b là hai số đối nhau

Bài 2:

Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\left(a-b\right)^2\ge0\) với mọi a và b

\(\left(a-c\right)^2\ge0\) với mọi a và c

\(\left(b-c\right)^2\ge0\) với mọi b và c

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) với mọi a, b, c

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)

Vậy a = b = c

Bài 3:

Sửa đề:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)

\(\Rightarrow a^2y^2+b^2x^2=2axby\)

\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Rightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Rightarrow ay=bx\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

19 tháng 5 2017

Ta có: (a2 + b2).(x2+ y2) = (ax + by)2

<=> a2x2 + a2y2 + b2x2 + b2y2 = a2x2 + 2axby + b2y2

<=> a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2 = 0

<=> a2y2 - 2axby + b2x2 = 0

<=> ( ay - bx)2 = 0

<=> ay - bx = 0

<=> ay = bx => \(\dfrac{a}{x}=\dfrac{b}{y}\) hoặc \(\dfrac{a}{b}=\dfrac{x}{y}\) ( a,b,x,y \(\ne\) 0) => đpcm

P/s: Đây chính là trường hợp dấu = xảy ra của BĐT Bunhia hehe

29 tháng 1 2020

theo đề bài thì:

\(ax+by+cz=x^3+y^3+z^3-3xyz⋮x^2+y^2+z^2-xy-yz-zx\)

Mà có hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> đpcm

7 tháng 3 2021

\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)

22 tháng 6 2016

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(=>a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)=\left(ax\right)^2+2axby+\left(by\right)^2\)

\(=>a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2=0\)

\(=>a^2y^2+b^2x^2-2axby=0=>\left(ay-bx\right)^2=0\)

=>ax-by=0=>ax=by

Vậy .....................

 

22 tháng 6 2016

2) b)

Xét hiệu :

\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)

\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)

\(=\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)

\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+1\right)-\left(107-105\right)\left(107+105\right)\)\(-\left(96-94\right)\left(96+94\right)\)

\(=2.198+2.204-2.212-2.190=2\left(198+204-212-190\right)=2.0=0\)

Vậy 1002+1032+1052+942=1012+982+962+1072