\(a,b\in R,a< b\). Hãy xét quan hệ bao hàm \(\subset\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

a) \(\varnothing\)

b) \(\left(a;c\right)\)\\(\left\{b\right\}\)

c) (\(a;b\)]

d) \(\left(a,b\right)\)

16 tháng 5 2017

a) \(\left(a;b\right)\cap\left(c;d\right)=\varnothing\)

b) (a; c] \ (b; d) = [b; c)

c) (a; d) \ (b; c) = (a; b] \(\cup\) [c; d)

d) (b;d) \ (a; c) = [c; d)

2 tháng 8 2018

a) (a;b)∩(c;d)=∅(a;b)∩(c;d)=∅

b) (a;c]∩[b;d)=[b;c](a;c]∩[b;d)=[b;c]

c) (a;d)∖(b;c)=(a;b]∪[c;d)(a;d)∖(b;c)=(a;b]∪[c;d)

d) (b;d)∖(a;c)=[c;d)

1: A={-3;-2;-1;0;1;2;3}

B={2;-2;4;-4}

A giao B={2;-2}

A hợp B={-3;-2;-1;0;1;2;3;4;-4}

2: x thuộc A giao B

=>\(x=\left\{2;-2\right\}\)

15 tháng 9 2019

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh

NV
19 tháng 9 2020

\(B\backslash A=\left\{d;e\right\}\)

Tập X thỏa mãn \(A\subset X\subset B\) khi X là hợp của A và các tập con của \(B\backslash A\)

\(B\backslash A\)\(2^2=4\) tập con nên có 4 tập X thỏa mãn

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1