\(a;b\in N\)Gọi \(A=ƯC\left(19a+6b;16a+5b\right),B=ƯC\left(22a+5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

A=(a-b+c)-(b-c-d)+(c-d+a)

A=a-b+c-b+c+d+c-d+a

A=2a-2b-3c

B=( a + b - c ) + ( b + c - a ) - ( a - c )

B=a + b - c + b + c - a - a + c

B=2b + c - a


8 tháng 1 2019

C = - ( 4a + 5b + c) - ( 5b + 3c )

C = -4a - 5b - c - 5b -3c

C= -4a - 10b - 4c

D= ( a - 3b + c) - ( 2a -b +c)

D= a - 3b +c - 2a + b -c

D= a - 2b

14 tháng 8 2017

cm 10a + b chia hết cho 7

ta có : a+5b chia hết cho 7 => 10(a+5b) chia hết cho 7=> 10a+50b chia hết cho 7)(1)

xét hiệu: 10a+50b-(10a+b)=49b chia hết cho 7   (2)

                 từ (1);(2) =>10a+b chia hết cho 7

cm a+5b chia hết cho 7

ta có 10a+b chia hết cho 7=> 5(10a+b) chia hết cho 7 => 50a+5b chia hết cho 7 (1)

xét hiệu: 50a+5b-(a+5b)=49a chia hết cho 7 (2)

từ (1);(2)=>a+5b chia hết cho 7

nhớ tích đúng cho mình nhé ahihi

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
11 tháng 12 2022

a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2

Nếu a,b ko cùng tính chẵn lẻ thì 

ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2

Nếu a,b lẻ thì (a+b) chia hết cho 2

=>ab(a+b) chia hết cho 2

b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

12 tháng 4 2017

Bài 1:

Ta có:

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

\(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)

\(*)\) Với \(a=0\) ta có:

Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)

\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)

Do \(3b+1\div3\)\(1\)\(3b+1>1+b\)

Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)

\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:

Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)

Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

Bài 2:

Ta có:

\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)

\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)

\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)

\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)

25 tháng 4 2017

Tuyệt cú mèokhocroikhocroikhocroi