Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quá ez, nhưng cũng khá khen cho m đấy tth =))
\(A=\frac{2\left(a^3c+b^3a+c^3b\right)}{\omega\left(x+y+z\right)}.\left(\frac{a^3}{x}+\frac{b^3}{y}+\frac{c^3}{z}\right)\)
\(=\frac{2\Sigma_{cyc}a^3c}{abc.\Sigma\left(ab+bc\right)}.\Sigma\frac{a^3}{ab+ac}\)
\(=\frac{\Sigma_{cyc}a^3c}{abc\left(ab+bc+ca\right)}.\Sigma\frac{a^2}{b+c}\)
\(\ge\frac{\Sigma_{cyc}a^3c}{abc.\frac{\left(a+b+c\right)^2}{3}}.\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)(áp dụng \(\Sigma ab\le\frac{\left(\Sigma a\right)^2}{3}\)và Cô-si dạng engel)
\(=\frac{3\Sigma_{cyc}a^3c}{2abc\left(a+b+c\right)}\)
Ta đi chứng minh \(\frac{\Sigma_{cyc}a^3c}{abc\left(a+b+c\right)}\ge1\)thật vậy
Bđt \(\Leftrightarrow\frac{\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}}{a+b+c}\ge1\)
Có \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
\(\Rightarrow\frac{\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}}{a+b+c}\ge1\left(Q.E.D\right)\)
Nên \(A\ge\frac{3\Sigma_{cyc}a^3c}{2abc\left(a+b+c\right)}\ge\frac{3}{2}\)
Dấu "=" tại a=b=c và w=a3
P/S: 2 anh chị giỏi quá, nghĩ hẳn ra đề luôn , muốn solo toán với em không ? >: e lớp 7 thôi hà
a, x^3-y^2-y=1/3
=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0
=> x > 0
Tương tự : y,z đều > 0
Tk mk nha
ta có hpt
<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)
Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)
Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)
=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)
=>\(y\ge z\) (2)
với y>= z, từ pt(2) =>z>=x (3)
Từ 91),(2),(3)
=> x=y=z>0 (ĐPCM)
Với x=y=z>0, thay vào pt(1), Ta có
\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)
<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)
<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V
^_^
Trả lời :
Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)
Study ưell
Không chắc
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)