Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
này không được ăn gian kiểu này đâu nhá! Phải tự giải đi chứ
Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=A\)
Áp dụng TC DTSBN ta có :
\(A=\frac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}\)
\(=\frac{x+2y+z}{9a}=\frac{1}{9}.\frac{x+2y+z}{a}\) (1)
\(A=\frac{2x+y+z}{2\left(a+2b+c\right)+2a+b-c+4a-4b+c}=\frac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}\)
\(=\frac{2x+y-z}{9b}=\frac{1}{9}.\frac{2x+y-z}{b}\) (2)
\(A=\frac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)+4a-4b+c}=\frac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\)
\(=\frac{4x-4y+z}{9c}=\frac{1}{9}.\frac{4x-4y+z}{c}\)(3)
Từ (1);(2);(3) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y+z}=\frac{c}{4x-4y+z}\) (đpcm)
a) Đề sai nhé !
b) Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-cya+bcx-abz+cay-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow abz-cya=0\Leftrightarrow abz=cya\Leftrightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)(1)
\(\Rightarrow bcx-abz=0\Leftrightarrow bcx=abz\Leftrightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)(2)
Từ (1) và (2) ta có \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
b) \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{\left(abz-acy\right)+\left(bcx-abz\right)+\left(acy-bcx\right)}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
=> bz - cy = 0 => bz = cy => \(\frac{z}{c}=\frac{b}{y}\) (1)
và cx - az = 0 => cx = az => \(\frac{x}{a}=\frac{z}{c}\) (2)
Từ (1) và (2) => đpcm
a) Sửa lại số thứ 3 là \(\frac{c}{4x-4y+z}\) mới đúng !!!
Theo đề bài suy ra :
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{9b}\) (tính chất dãy tỉ số bằng nhau)
Tương tự cũng gấp đôi tử và mẫu của 2 phân số còn lại, rồi áp dụng tính chất dãy tỉ số bằng nhau với từng dãy tỉ số ta được :
\(\frac{x}{a+2b}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)\(\frac{x+2y+z}{9a}\) = \(\frac{4x-4y+z}{9c}\)
Do đó ta có :
\(\frac{2x+y-z}{9b}=\frac{x+2y+z}{9a}=\frac{4x-4y+z}{9c}\) \(\Rightarrow\frac{9b}{2x+y-z}=\frac{9a}{x+2y+z}=\frac{9c}{4x-4y+z}\)
\(\Rightarrow\frac{b}{2x+y+z}=\frac{a}{x+2y+z}=\frac{c}{4x-4y+z}\) (đpcm)
Ta có: \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x}{2a+4b+2c}=\frac{2y}{4a+2b-2c}\)
\(=\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{a+2b+c}=\frac{2y}{4a+2b-2c}=\frac{z}{4a-4b+c}=\frac{x+2y+z}{\left(a+2b+c\right)+\left(4a+2b-2c\right)+\left(4a-4b+c\right)}=\frac{x+2y+z}{9a}\left(1\right)\)
\(\frac{2x}{2a+4b+2c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=\frac{2x+y-z}{\left(2a+4b+2c\right)+\left(2a+b-c\right)-\left(4a-4b+c\right)}=\frac{2x+y-z}{9b}\left(2\right)\)
\(\frac{4x}{4a+8b+4c}=\frac{4y}{8a+4b-4c}=\frac{z}{4a-4b+c}=\frac{4x-4y+z}{\left(4a+8b+4c\right)-\left(8a+4b-4c\right)+\left(4a-4b+c\right)}=\frac{4x-4y+z}{9c}\left(2\right)\)
Từ (1); (2); (3) \(\Rightarrow\frac{x+2y+z}{9a}=\frac{2x+y-z}{9b}=\frac{4x-4y+z}{9c}\)
\(\Rightarrow\frac{x+2y+z}{a}=\frac{2x+y-z}{b}=\frac{4x-4y+z}{c}\)
\(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\left(đpcm\right)\)