K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

mình nghĩ đề thế này, do bạn ko viết a+1,b+1,c+1 dưới mẫu

Cho abc = 1 . CMR : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)

                                             GIẢI

Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a^2bc+abc+ab}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)

\(=\frac{ab+a+1}{ab+a+1}=1\)

16 tháng 2 2019

Em kiểm tra lại đề bài nhé !

NV
16 tháng 2 2019

Chắc bạn viết nhầm đề, cho \(a=b=c=1\) đâu có đúng

Sửa lại đề: cho \(abc=1\) chứng minh \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)

Ta có

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}\)

\(=\dfrac{a+ab+1}{ab+a+1}=1\) (đpcm)

16 tháng 2 2019

Hỏi đáp Toán

Đề bạn Lâm đúng đấy!

18 tháng 12 2018

ac+c+1

16 tháng 2 2019

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{abc+ac+1}+\dfrac{ab}{abc+ab+1}+\dfrac{bc}{abc+bc+1}\)

\(=\dfrac{ac}{ac+2}+\dfrac{ab}{ab+2}+\dfrac{bc}{bc+2}\)

\(=abc\left(\dfrac{b}{abc+2}+\dfrac{c}{abc+2}+\dfrac{a}{abc+2}\right)\)

\(=1.1=1\)(đpcm).

Vậy \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\).

9 tháng 2 2021
Gọi DD là điểm trên cạnh ACAC sao cho DB=DCDB=DCgọi EE là điểm trên cạnh BCBC sao cho CE=ABCE=AB7ˆC=180∘7C^=180∘ˆDBC=ˆDCB=12ˆABC=ˆABDDBC^=DCB^=12ABC^=ABD^⇒△ABD∼△ACB⇒△ABD∼△ACB (g, g)⇒ABAC=BDCB⇒ABAC=BDCB (1)△ABD=△ECD△ABD=△ECD (c, g, c) (2)(2)⇒ˆDEC=ˆDAB=4ˆC⇒DEC^=DAB^=4C^⇒ˆDEB=180∘−4ˆC=3ˆC⇒DEB^=180∘−4C^=3C^ (3)(2)⇒ˆEDC=ˆADB=2ˆC⇒EDC^=ADB^=2C^⇒ˆEDB=180∘−ˆEDC−ˆADB=3ˆC⇒EDB^=180∘−EDC^−ADB^=3C^ (4)từ (3, 4)⇒DB=EB⇒DB=EB (5)từ (1, 5)⇒ABAC=EBBC=1−ECBC=1−ABBC⇒ABAC=EBBC=1−ECBC=1−ABBC⇒ABAC+ABBC=1⇒ABAC+ABBC=1⇒1AB=1AC+1BC⇒1AB=1AC+1BC (đpcm)

Hình gửi kèm

Cho ΔABC có A^=2B^=4C^.pngNguồn: https://diendantoanhoc.net/topic/181822-frac1abfrac1acfrac1bc/
NV
29 tháng 4 2021

Do \(a;b;c\in\left[0;1\right]\Rightarrow\left(1-a\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow ac+1\ge a+c\)

\(\Rightarrow1+b+ac\ge a+b+c\Rightarrow\dfrac{1}{1+b+ac}\le\dfrac{1}{a+b+c}\)

Tương tự: \(\dfrac{1}{1+c+ab}\le\dfrac{1}{a+b+c}\) ; \(\dfrac{1}{1+a+bc}\le\dfrac{1}{a+b+c}\)

Cộng vế với vế:

\(\dfrac{1}{1+b+ca}+\dfrac{1}{1+c+ab}+\dfrac{1}{1+a+bc}\le\dfrac{3}{a+b+c}\) (đpcm)

25 tháng 5 2022

Vì \(0\le a\le b\le c\le1\) nên:

\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)

Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)

Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)

Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)

Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)

25 tháng 5 2022

undefined

vầy hả cj ;-;?