Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2+c^2=m^2+n^2+p^2\)
\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2=2\left(m^2+n^2+p^2\right)\)
Vì \(2\left(m^2+n^2+p^2\right)⋮2\)\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2⋮2\)(1)
Vì tích hai số tự nhiên liên tiếp chia hết cho 2 nên:
\(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+m\left(m-1\right)\)
\(+n\left(n-1\right)+p\left(p-1\right)\)là số chẵn
\(\Rightarrow\left(a^2+b^2+c^2+m^2+n^2+p^2\right)-\left(a+b+c+m+n+p\right)⋮2\)(2)
Từ (1) và (2) suy ra a + b + c + m + n + p chia hết cho 2
Mà a + b + c + m + n + p > 2 ( do a,b,c,m,n,p dương) nên a + b + c + m + n + p là hợp số (đpcm)
Câu 1:
\(-\frac{1}{54}-\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{79.81}\right)\)
\(=-\frac{1}{54}-\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{79}-\frac{1}{81}\right)\)
\(=-\frac{1}{54}-\frac{3}{2}\left(1-\frac{1}{81}\right)\)
\(=-\frac{1}{54}-\frac{40}{27}\)
\(=-\frac{3}{2}\)
Câu 2:
\(a^2+b^2+c^2+d^2+e^2=\left(a+b+c+d+e\right)^2-2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)\)
Mà \(2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)⋮2\)
\(\Rightarrow\left(a+b+c+d+e\right)^2⋮2\)
\(\Rightarrow a+b+c+d+e⋮2\)
Do \(a,b,c,d,e\) nguyên dương \(\Rightarrow a+b+c+d+e>2\Rightarrow a+b+c+d+e\) là hợp số
Câu 3:
- Chiều thuận: \(3a+2b⋮17\Rightarrow10a+b⋮17\)
Ta có \(\left\{{}\begin{matrix}17a⋮17\\3a+2b⋮17\end{matrix}\right.\) \(\Rightarrow17a+3a+2b⋮17\Rightarrow20a+2b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\), mà 2 và 17 nguyên tố cùng nhau \(\Rightarrow10a+b⋮17\)
- Chiều nghịch: \(10a+b⋮17\Rightarrow3a+2b⋮17\)
\(10a+b⋮17\Rightarrow2\left(10a+b\right)⋮17\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
Mà \(17a⋮17\Rightarrow3a+2b⋮17\) (đpcm)
Lời giải:
Từ \(a^2+b^2=c^2\Rightarrow (a+b)^2-c^2=2ab\)
\(\Rightarrow (a+b-c)(a+b+c)=2ab\) \((1)\)
TH1: Nếu \(a+b+c\) lẻ:
Từ \((1)\) có \(2ab\) chia hết cho $a+b+c$ . Mà \((2,a+b+c)=1\Rightarrow\) $ab$ chia hết cho $a+b+c$
TH2: \(a+b+c \) chẵn. Vì \(a+b+c,a+b-c\) cùng tính chẵn lẻ nên \(a+b-c\) chẵn. Đặt \(a+b-c=2k\Rightarrow ab=k(a+b+c)\)
\(\Rightarrow ab\) chia hết cho $a+b+c$
Từ 2 TH trên, suy ra \(ab\) chia hết cho \(a+b+c\)
Em tưởng a+b+c lẻ là vô lí ạ?
Vì nếu a+b+c lẻ thì a+b+c-2c = a+b-c cũng lẻ
=> 2ab lẻ (vô lí)
Ta có :
a < b \(\Rightarrow\)2a < a + b \(\Rightarrow\)\(\frac{a}{a+b}< \frac{1}{2}\)
c < d \(\Rightarrow\)2c < c + d \(\Rightarrow\)\(\frac{c}{c+d}< \frac{1}{2}\)
m < n \(\Rightarrow\)2m < m + n \(\Rightarrow\)\(\frac{m}{m+n}< \frac{1}{2}\)
\(\Rightarrow\)2a + 2c + 2m < ( a + b ) + ( c + d ) + ( m + n )
\(\Rightarrow\)2 . (a + c + nm ) < a + b + c + d + m + n
\(\Rightarrow\)\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
\(a< b\Rightarrow2a< a+b\)
\(c< d\Rightarrow2c< c+d\)
\(m< n\Rightarrow2m< m+n\)
\(\Rightarrow2a+2c+2m< a+b+c+d+m+n\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(\text{đ}pcm\right)\)
Vì a,b,c,d,m,n thuộc Z và a < b < c < d < m < n nên ta có :
a + b < 2a ( 1 )
c + d < 2c (2)
m + n < 2m ( 3)
Cộng vế với vế các bđt (1), (2) và (3) ta được : a + b + c + d + m + n > 2 ( a + c + m )
=> \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)
=>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\) ( đpcm )
xin lỗi mình đánh nhầm dấu ">" thành "<" mình xin đính chính lại nhé : a + c > 2a (1 )
c + d > 2c (2)
m + n > 2m ( 3)
có chút sai xót chỗ này thành thật xin lỗi !