\(a,b,c\ge0\)và a+b+c=1.

cmr: \(a+2b+c\ge4\left(1-a\righ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

Lời giải:

Ta thấy:

\(\text{VT}=a+2b+c=(a+b+c)+b=1+b(1)\)

Vế phải:

Áp dụng BĐT AM-GM:
\(4(1-a)(1-c)\leq (1-a+1-c)^2=(2-a-c)^2=(1+a+b+c-a-c)^2=(1+b)^2(2)\)

\(\Rightarrow 4(1-a)(1-b)(1-c)\leq (1-b)(1+b)^2\)

Mà : \((1-b)(1+b)^2-(1+b)=(1+b)[(1-b^2)-1]=-b^2(1+b)\leq 0, \forall b\geq 0\)

Do đó: \((1-b)(1+b)^2\leq 1+b(3)\)

Từ (1);(2);(3) ta có đpcm

Dấu bằng xảy ra khi \(a=c=\frac{1}{2}; b=0\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(4(1-a)(1-c)\leq (1-a+1-c)^2=(1+b)^2\)

\(\Rightarrow 4(1-a)(1-b)(1-c)\leq (1+b)^2(1-b)(1)\)

Mà:

\(a+2b+c-(1+b)^2(1-b)=1+b-(1+b)(1-b)=(1+b)[1-(1-b^2)]\)

\(=(1+b)b^2>0, \forall b>0\)

\(\Rightarrow a+2b+c> (1+b)^2(1-b)(2)\)

Từ \((1);(2)\Rightarrow a+2b+c> 4(1-a)(1-b)(1-c)\)

11 tháng 10 2018

Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Lời giải:

\(a,b,c\geq 0\rightarrow 1-a,1-b,1-c\geq 0\)

Áp dụng BĐT Cauchy ngược dấu:
\((1-a)(1-c)\leq \left(\frac{1-a+1-c}{2}\right)^2=\left(\frac{2-a-c}{2}\right)^2=\left(\frac{1+b}{2}\right)^2\) (do $a+b+c=1$)

Do đó:

\(4(1-a)(1-b)(1-c)\leq 4(1-b)\left(\frac{1+b}{2}\right)^2=(1-b)(1+b)^2=(1+b)(1-b^2)\)

\(b^2\geq 0\Rightarrow 1-b^2\leq 1\Rightarrow (1+b)(1-b^2)\leq 1+b=a+b+c+b=a+2b+c\)

Hay \(4(1-a)(1-b)(1-c)\leq a+2b+c\) (đpcm)

Dấu bằng xảy ra khi \((a,b,c)=(0,5; 0; 0,5)\)

11 tháng 2 2018

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

28 tháng 9 2020

Não đặc-.-

Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek

Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương

Bài làm:

Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)

\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)

\(=1-1=0\)

Dấu "=" xảy ra khi: \(a=b=c\)

28 tháng 9 2020

Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

10 tháng 10 2020

không đâu cá tiền luôn 500 đồng lun sợ gì :))))) đùa thui ko có đâu nhé