Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)
Vì a+b+c+d khác 0
=> b+c+d=a+c+d=a+b+d=a+b+c
=>a=b=c=d
Khi đó:
a + b = c+d
b+c= (a+d)
c+d=a+b
d+a=b+c
=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
Ta có:\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
=>\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Vì các phân số trên có cùng tử. Nên các mẫu của phân số đó bằng nhau.
=>a=b=c=d
=>M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)=\(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)=1+1+1+1=4
Vậy M=4
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy 3a= b+c+d 3b=c+d+a 3c=d+a+b 3d=a+b+c
Suy ra a=b=c=d
Thay vào ta có M=1+1+1+1=4
BẤM ĐÚNG CHO MÌNH NHÉ
Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(1\right)\\ \Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\frac{a-b}{c-d}=\frac{ck-dk}{c-d}=\frac{k\left(c-d\right)}{c-d}=k\left(2\right)\)
(1)(2) \(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)
áp dụng tính chất dẫy tỉ số = nhau ta được
b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3
do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k
suy ra k =3 .đơn giản vậy thôi
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{b+a+b}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{b+a+b}{c}=\frac{a+b+c}{d}\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{b+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(=\frac{b+c+d}{a}+\frac{a}{a}=\frac{c+d+a}{b}+\frac{b}{b}=\frac{b+a+b}{c}+\frac{c}{c}=\frac{a+b+c}{d}+\frac{d}{d}\)
\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
Do đó \(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1=3\)
\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Vì \(a+b+c+d\ne0\) nên \(b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow A=1+1+1+1=4\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm1\right).\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm2\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}.\)
\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)
\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}\left(đpcm3\right).\)
d) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}.\)
\(\Rightarrow\frac{b}{a}-1=\frac{d}{c}-1\)
\(\Rightarrow\frac{b}{a}-\frac{a}{a}=\frac{d}{c}-\frac{c}{c}\)
\(\Rightarrow\frac{b-a}{a}=\frac{d-c}{c}\left(đpcm4\right).\)
Còn 2 câu kia tí nữa mình làm sau nhé.
Chúc bạn học tốt!
bài này ở trog SGK tập 1 toán 7 đúng ko bn? để mk giải giúp cho:
a) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-c}{b-d}\)
\(\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
d) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
e) Từ kết quả câu c), ta có : \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
f) Từ kết quả câu d), ta có : \(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
tick cho mk nha!!