\(\in\)Z biết tich ab là số liền sau cua tích cd và a+b=c+d.Chứng tỏ rằng a=b<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

a) Giải:

Ta có:

\(ab-ac+bc-c^2=-1\)

\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)

Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)

Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau

\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)

Suy ra \(b=-a\) tức \(a\)\(b\) là hai số đối nhau

Vậy \(a\)\(b\) là hai số đối nhau (Đpcm)

b) Giải:

Ta có:

Từ \(a+b=c+d\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

\(\Rightarrow ab-c\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2=1\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)

Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))

Hay \(a=b\) (Đpcm)

9 tháng 6 2018

Ta có : a +b = c+d

=> d = a+b-c

Vì ab là số liền sau của cd nên ab -cd = 1

Mà d = a+b-c nên ta có :

ab-c.(a+b-c) = 1

=> ab -ac - bc + c2

= > a(b-c)-c(b-c) = 1

=> ( a - c ) (b - c) = 1

=> a-c = b-c

=> a=b

Vậy a = b

~~~~~~~~~~~~Chucs bạn học tốt nha ~~~~~~~~~~~~~~~

14 tháng 7 2016

1. 11n+2 + 122n+1

= 11n. 121 + 144n.12

=11n.(133-12) + 144n.12

= 11n.133 + 12(144n - 11n)

11n.133 chia het cho 133

144n-11chia hết cho 144-11=133

15 tháng 7 2016

Theo tớ chỗ 144^n -11^n phải sửa thành 133^n+11^n.Cám ơn cậu đã giúp twos giải toán.

7 tháng 4 2016

trường hợp : ab = cd + 1

ta có a+ b = c + d

=> b.(a+b) = b(c+d) => a.b + b 2 = bc + bd mà ab = cd + 1

nên cd + 1 + b 2 = bc + bd => bc - cd + bd - b 2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1

c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm

Trường hợp 2: ab = cd - 1: tương tự 

23 tháng 6 2018

Bài 1:

Ta có:

\(\left(x-7\right)\left(xy+1\right)=9\)

Ta có bảng:

x - 7 1 -1 3 -3 9 -9
x 8 6 10 4 16 -2
xy + 1 9 -9 3 -3 1 -1
y 1 -5/3 1/5 -1 0 1
nhận loại loại nhận nhận nhận

Vậy ...