\(a,b,c,d\in Z^+\) và \(a^2+b^2=c^2+d^2\)

     CMR...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

\(a^2+b^2=c^2+d^2\Rightarrow2.\left(a^2+b^2\right)=a^2+b^2+c^2+d^2⋮2\left(\text{vì}a,b,c,d\in Z^+\right)\)

\(\text{Có: }a^2-a=a.\left(a-1\right)⋮2\). tương tự b2-b,c2-c và d2-d đều chia hết cho 2 

\(\Rightarrow a^2+b^2+c^2+d^2-\left(a+b+c+d\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2⋮2\Rightarrow a+b+c+d⋮2\)

Lại có: a,b,c,d thuộc Z+ nên \(a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)(vì a+b+c+d chia hết cho 2)

Vậy...

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

31 tháng 8 2017

\(a^3+b^3=2\left(c^3-8d\right)^3\)
\(a^3+b^3+c^3+d^3=3c^3-15d^3=3\left(c^3-5d^3\right)\)
VP chia hết cho 3 => VT phải chia hết cho 3
\(a^3+b^3+c^3+d^3\) phải chia hết cho 3
\(a^3+b^3+c^3+d^3=\left(a+b+c+d\right)^3-3A\)
A là biểu thức đại số chứa các tích \(\left(ab;ac;ad;bc;bd\right)\)
3A chia hết cho 3
\(\Rightarrow\left(a+b+c+d\right)^3\) chia hết cho 3
\(\Rightarrow\left(a+b+c+d\right)\) chia hết cho 3

\(\Rightarrowđpcm\)

10 tháng 10 2021

Viết rõ cái 3A ra đi bạn

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932

22 tháng 2 2018

a) Ta có \(x^2-6x+11=\left(x-3\right)^2+2\ge2;y^2+2y+4=\left(y+1\right)^2+3\ge3\)

=>\(\left(x^2-6x+11\right)\left(y^2+2y+4\right)\ge2.3=6\)

Mà \(4z-z^2+2=6-\left(z^2-4z+4\right)=6-\left(z-2\right)^2\le6\)

=>VT>=VP

Dấu = xảy ra tự tìm nhé ^^

3)

Ta có \(BĐT\Leftrightarrow a^4-4a+3\ge0\Leftrightarrow a^4-2a^2+1+2a^2-4a+1\ge0\)

\(\Leftrightarrow\left(a^2-1\right)^2+2\left(a^2-2a+1\right)\ge0\Leftrightarrow\left(a^2-1\right)^2+2\left(a-1\right)^2\ge0\left(lđ\right)\)

=> BĐt cần chứng minh luôn đúng 

Dấu = xảy ra <=> a=1 nhé, có dấu = bạn nhé 

^^

31 tháng 10 2019

Thế 

làm

đi ~.~

5 tháng 7 2018

Theo mình là chẵn

26 tháng 4 2017

bình phương gt1 và gt2 và thay vào là ra bạn à