Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $a< b< c$ và lập thành 1 csc nên đặt $b=a+d, c=a+2d$.
Theo công thư tính diện tích:
$S=\frac{abc}{4R}=pr$
$\Rightarrow 6Rr=\frac{3abc}{2p}=\frac{3abc}{a+b+c}$
$=\frac{3abc}{a+a+d+a+2d}=\frac{3abc}{3(a+d)}=\frac{3abc}{3b}=ac$ (đpcm)
Dễ thấy P là điểm chính giữa \widebatEF\widebatEF nên D,N,P thẳng hàng
Cần chứng minh ˆIMC=ˆPDCIMC^=PDC^
Ta có : ˆIMC=ˆMIB+ˆB1=12ˆBIC+ˆB1=12(180o−ˆB1−ˆC1)+ˆB1IMC^=MIB^+B1^=12BIC^+B1^=12(180o−B1^−C1^)+B1^
=12(180o−ˆABC2−ˆACB2)+ˆABC2=90o+ˆABC4−ˆACB4=12(180o−ABC^2−ACB^2)+ABC^2=90o+ABC^4−ACB^4
ˆPDC=ˆPDE+ˆEDC=12ˆEDF+ˆEDCPDC^=PDE^+EDC^=12EDF^+EDC^=12(180o−ˆFDB−ˆEDC)+ˆEDC=12(180o−FDB^−EDC^)+EDC^
=90o−ˆFDB2+ˆEDC2=90o−90o−ˆB12+90o−ˆC12=90o−FDB^2+EDC^2=90o−90o−B1^2+90o−C1^2
=90o+ˆABC4−ˆACB4=90o+ABC^4−ACB^4
⇒ˆIMC=ˆPDC⇒IM//ND⇒IMC^=PDC^⇒IM//ND
b) Theo câu a suy ra ˆMID=ˆIDPMID^=IDP^
Mà ΔPIDΔPIDcân tại I ( do IP = ID ) nên ˆIPD=ˆIDPIPD^=IDP^
Suy ra ˆMID=ˆIPD=ˆQPNMID^=IPD^=QPN^
⇒ΔIDM≈ΔPQN(g.g)⇒ΔIDM≈ΔPQN(g.g)
c) từ câu b ⇒IMPN=IDPQ=IPPQ⇒IMPN=IDPQ=IPPQ( 1 )
Theo hệ thức lượng, ta có : IQ.IA=IE2=IP2IQ.IA=IE2=IP2
Do đó : QPIP=1−IQIP=1−IPIA=PAIAQPIP=1−IQIP=1−IPIA=PAIA
Suy ra IPQP=IAPAIPQP=IAPA( 2 )
Từ ( 1 ) và ( 2 ) ⇒IMPN=IAPA⇒IMPN=IAPAkết hợp với IM // PN suy ra A,M,N thẳng hàng
Cần chứng minh
\(\overrightarrow{A_1B_1}=\overrightarrow{E_1D_1}\), \(_{ }\overrightarrow{B_1C_1}=\overrightarrow{F_1E_1}\), \(\overrightarrow{C_1D_1}=\overrightarrow{A_1F_1}\)
Ta có :
\(\overrightarrow{OA_1}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}{3}\) ; \(\overrightarrow{OD_1}=\frac{\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}}{3}\)
\(\overrightarrow{OB_1}=\frac{\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}}{3}\) ; \(\overrightarrow{OE_1}=\frac{\overrightarrow{OE}+\overrightarrow{OF}+\overrightarrow{OA}}{3}\)
Từ đó suy ra :
\(\overrightarrow{A_1B_1}+\overrightarrow{OD_1}=\frac{\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}+\overrightarrow{OF}}{3}=\overrightarrow{0B_1}+\overrightarrow{OE_1}\)
và do đó
\(\overrightarrow{A_1B_1}=\overrightarrow{E_1D_1}\)
Tương tự ta cũng có \(\overrightarrow{B_1C_1}=\overrightarrow{F_1E_1}\) ,\(\overrightarrow{C_1D_1}=\overrightarrow{A_1F_1}\) => Điều phải chứng minh
Gọi 3 cạnh tam giác là \(a\) ; \(a+d\) ; \(a+2d\) (với \(a>d\))
\(p=\dfrac{3a+3d}{2}\) ; \(r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}=9\)
\(\Rightarrow\left(\dfrac{a+3d}{2}\right)\left(\dfrac{a+d}{2}\right)\left(\dfrac{a-d}{2}\right)=\dfrac{27}{2}\left(a+d\right)\)
\(\Leftrightarrow\left(a+3d\right)\left(a-d\right)=108\)
Do \(\left(a+3d\right)+\left(a-d\right)=2\left(a+d\right)\) chẵn ta chỉ cần xét các cặp ước dương cùng tính chẵn lẻ của 108
TH1: \(\left\{{}\begin{matrix}a+3d=54\\a-d=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=15\\d=13\end{matrix}\right.\)
Ba cạnh là: \(\left(15;28;41\right)\)
TH2: \(\left\{{}\begin{matrix}a+3d=18\\a-d=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=9\\d=3\end{matrix}\right.\)
Ba cạnh là: \(\left(9;12;15\right)\)
Ta cần chứng minh tam giác MNP là tam giác cân và có một góc bằng \(\frac{\Pi}{3}\)
Giả sử lục giacs có hướng âm, kí hiệu \(f\) là phép quay vec tơ theo góc \(-\frac{\Pi}{3}\) và M, N. P theo thứ tự là trung điểm FA, BC, DE
Khi đó AB=BO, CD=DO=OC, EF=FO=OE nên các tam giác ABO, CDO, EFO đều và có hướng âm
Suy ra \(f\left(\overrightarrow{AB}\right)=\overrightarrow{AO}\), \(f\left(\overrightarrow{OC}\right)=\overrightarrow{OD}\), \(f\left(\overrightarrow{FO}\right)=\overrightarrow{FE}\)
Từ đó ta có :
\(f\left(\overrightarrow{MN}\right)=f\left(\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{FC}\right)\right)=\frac{1}{2}\left(f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{FC}\right)\right)\)
\(=\frac{1}{2}\left(\overrightarrow{AO}\right)+\overrightarrow{OD}+\overrightarrow{FE}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{FE}\right)\)
\(=\overrightarrow{MP}\)
Suy ra tam giác MNP cân và có góc PMN = \(\frac{\Pi}{3}\) => Điều phải chứng minh