K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2022

Do you know anything about the Bunyakovsky's inequality? It states that:

"With 2 sets of numbers \(\left(a_1,a_2,a_3,...,a_n\right)\) and \(\left(b_1,b_2,b_3,...,b_n\right)\), we have \(\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\left(b_1^2+b_2^2+b_3^2+...+b_n^2\right)\)\(\ge\left(a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\right)^2\)."

If you want to study more about this inequality, please check it on the Internet. Now, I'll give you the summary solution:

We have \(\left(a^2+b^2+c^2+d^2\right)\left(1^2+1^2+1^2+1^2\right)\)\(\ge\left(a.1+b.1+c.1+d.1\right)^2\) 

\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2\right)\ge4\) (Because \(a+b+c+d=2\))

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge1\)

"=" happens when \(a=b=c=d=\dfrac{1}{2}\)

7 tháng 7 2022

Áp dụng BĐT Caushy ta có:

\(A^2+\dfrac{1}{4}\ge A;B^2+\dfrac{1}{4}\ge B;C^2+\dfrac{1}{4}\ge C;D^2+\dfrac{1}{4}\ge D\)

\(\Rightarrow A^2+B^2+C^2+D^2+1\ge A+B+C+D=2\)

\(\Leftrightarrow A^2+B^2+C^2+D^2\ge1\left(đpcm\right)\)

Dấu "=" xảy ra \(\Leftrightarrow A=B=C=D=1\)

6 tháng 2 2022

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

2 tháng 3 2022

 mik chưa hiểu dòng thứ 2 bạn giải thích rõ hơn được ko

 

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

11 tháng 7 2023

\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).

Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)

29 tháng 6 2021

12632t54s jsd

17 tháng 7 2021

       \(ac+bd=0\)

\(=\) \(abc^2+abd^2+cda^2+cdb^2\)

\(=\)  \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)

\(=\)  \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)

26 tháng 2 2023

1 tháng 11 2019

Biến đổi vế trái ta có:

VT = ( a 2  +  b 2 )( c 2  +  d 2 )

=  a 2 c 2  +  a 2 d 2  +  b 2 c 2 +  b 2 d 2

= ( a 2 c 2  + 2abcd +  b 2 d 2  ) + ( a 2 d2 – 2abcd +  b 2 c 2 )

=  a c + b d 2 + a d - b c 2 =VP

Vế phải bằng vế trái nên đẳng thức được chứng minh.