Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Refer:
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:. a²/4 + c² ≥ ac.
a²/4 + d² ≥ ad.
a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)
\(ac+bd=0\)
\(=\) \(abc^2+abd^2+cda^2+cdb^2\)
\(=\) \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)
\(=\) \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)
Biến đổi vế trái ta có:
VT = ( a 2 + b 2 )( c 2 + d 2 )
= a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2
= ( a 2 c 2 + 2abcd + b 2 d 2 ) + ( a 2 d2 – 2abcd + b 2 c 2 )
= a c + b d 2 + a d - b c 2 =VP
Vế phải bằng vế trái nên đẳng thức được chứng minh.
Do you know anything about the Bunyakovsky's inequality? It states that:
"With 2 sets of numbers \(\left(a_1,a_2,a_3,...,a_n\right)\) and \(\left(b_1,b_2,b_3,...,b_n\right)\), we have \(\left(a_1^2+a_2^2+a_3^2+...+a_n^2\right)\left(b_1^2+b_2^2+b_3^2+...+b_n^2\right)\)\(\ge\left(a_1b_1+a_2b_2+a_3b_3+...+a_nb_n\right)^2\)."
If you want to study more about this inequality, please check it on the Internet. Now, I'll give you the summary solution:
We have \(\left(a^2+b^2+c^2+d^2\right)\left(1^2+1^2+1^2+1^2\right)\)\(\ge\left(a.1+b.1+c.1+d.1\right)^2\)
\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2\right)\ge4\) (Because \(a+b+c+d=2\))
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge1\)
"=" happens when \(a=b=c=d=\dfrac{1}{2}\)
Áp dụng BĐT Caushy ta có:
\(A^2+\dfrac{1}{4}\ge A;B^2+\dfrac{1}{4}\ge B;C^2+\dfrac{1}{4}\ge C;D^2+\dfrac{1}{4}\ge D\)
\(\Rightarrow A^2+B^2+C^2+D^2+1\ge A+B+C+D=2\)
\(\Leftrightarrow A^2+B^2+C^2+D^2\ge1\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow A=B=C=D=1\)