Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c+d=0
⇔\(a+d=-\left(b+c\right)\)
\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)
\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)
\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)
Ta có: a+b+c+d=0
\(\Leftrightarrow b+c=-\left(a+d\right)\)
\(\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)
\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-\left[a^3+d^3+3ad\left(a+d\right)\right]\)
\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-a^3-d^3-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\cdot\left[-\left(b+c\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)+3ad\left(b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)(đpcm)
ta có : a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)3=-(c+d)3
=> a3+b3+3ab(a+b)=-c3-d3-3cd(c+d)
=> a3+b3+c3+d3=-3ab(a+b)-3cd(c+d)
=> a3+b3+c3+d3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
=> a3 +b3+c3+d3==3(c+d)(ab-cd)
(dpcm)
a+b+c+d=0
=>a+d=-(b+c)
=>(a+d)^3=-(b+c)^3
=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)
=>\(a^3+d^3+3ad\left(a+d\right)=-b^3-c^3+3bc\left(a+d\right)\)
=>\(a^3+d^3+b^3+c^3=3bc\left(a+d\right)-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(a+d\right)\left(bc-ad\right)\)
=>\(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
\(a+b+c+d=0\Leftrightarrow b+c=-\left(a+d\right)\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)
\(a^3+b^3+c^3+d^3=\left(b+c\right)^3-3bc\left(b+c\right)+\left(a+d\right)^3-3ad\left(a+d\right)\)
\(=-3bc\left(b+c\right)+3ad\left(b+c\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)