K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BDEM có 

DE//BM

BD//EM

Do đó: BDEM là hình bình hành

Suy ra: DE=BM

mà DE=BC/2

nên BM=BC/2

hay M là trung điểm của BC

Xét ΔADE và ΔEMC có

\(\widehat{A}=\widehat{CEM}\)

DE=MC

\(\widehat{ADE}=\widehat{EMC}\)

Do đó: ΔADE=ΔEMC

b: Xét ΔABC có

DE//BC

nên AD/AB=DE/BC

=>AD/AB=1/2

=>AD=1/2AB

hay D là trung điểm của AB

 

25 tháng 3 2020
https://i.imgur.com/9jOj0Sa.jpg
17 tháng 10 2015

A B C D M E N F

+) Kẻ NF // AB 

=> góc NMF = MFB (SLT); góc NFM = FMB (SLT) mà cạnh chung MF

=>  Tam giác MNF và tam giác FBM (g- c- g) 

=> MN = BF và BM = NF => BM = NF = AD

+) Chứng minh được: tam giác ADE = NFC (g- c- g) => DE = FC 

=> DE + MN = FC + BF = BC = không đổi

Vậy...

30 tháng 7 2021

đề đâu?

30 tháng 7 2021

hình như là bị lag hay sao đấy ạ , để mik đăng lại 

 

Bài làm 

a) xét tam giác AED và tam giác MDE có:

^ADE = ^DEM ( do AD // EM )

ED chung

^EDM = ^AED ( do AE // DM )

=> Tam giác AED = tam giác MDE ( g.c.g )

=> AD = ME

b) Gọi O là giao điểm của ED và AM

Nối AM

Xét tam giác AEM và tam giác MDA có:

^EAM = ^AMD ( so le trong vì EA // DM )

AM chung

^EMA = ^DAM ( so le trong vì EM // AD )

=> Tam giác AEM = tam giác MDA ( g.c.g )

=> AE = DM ( hai cạnh tương ứng )

Xét tam giác AEO và tam giác MDO có:

^AED = ^EDM ( so le trong vì AE // DM )

AE = DM ( chúng minh trên )

^EAM = ^AMD ( so le trong vì AE // DM )

=> Tam giác AEO = tam giác MDO ( g.c.g )

=> EO = OD

=> O là trung điểm ED.      (1)

Mà OA = OM ( do tam giác AOE = tam giác DOM )

=> O là trung điểm của AM.     (2)

Từ (1), (2) => O là trung điểm của ED và AM và là giao điểm của OE và AM

Mà I là trung điểm ED ( giả thiết )

=> Điểm O và I trùng nhau.

=> I là trung điểm của ED và AM, là giao điểm của AM và ED

=> 3 điểm A, I, M thẳng hàng