K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Ta có: a2 + b2 = c+ d2

=>a2-c2=d2-b2

=>(a-c)(a+c)=(d-b)(d+b)   (1)

Lại có: a + b = c + d

=>a-c=d-b

Nếu a=c => b=d hiễn nhiên biểu thức:

a2002 + b2002 = c2002 + d2002 đúng.  (II)

Nếu ac =>bd

=>a-c=d-b0

Khi đó biểu thức (1) trở thành:

a+c=b+d (a-c, d-b khác không nên ta có thể đơn giản)

mà: a + b = c + d

cộng hai biểu thức theo vế ta được:

2a+b+c=b+c+2d

=>2a=2d

=>a=d

=>b=c

Vì a=d và b=c nên biểu thức a2002 + b2002 = c2002 + d2002 đúng. (I)

Kết luận: với điều kiện đềcho ta luôn có: a2002 + b2002 = c2002 + d2002.

11 tháng 7 2023

\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).

Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)

6 tháng 2 2022

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

2 tháng 3 2022

 mik chưa hiểu dòng thứ 2 bạn giải thích rõ hơn được ko

 

29 tháng 6 2021

12632t54s jsd

26 tháng 3 2020

Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)

Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:

Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 8 2023

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
11 tháng 11 2019

Ta có:

0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)

Tương tự:

0 < b < 1 ⇒ b2 - b < 0 (2)

0 < c < 1 ⇒ c2 - c < 0 (3)

Cộng (1); (2); (3) vế theo vế ta được:

a2 + b2 + c2 - a - b - c < 0

⇔ a2 + b2 + c2 < a + b + c

⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)