Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Refer:
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:. a²/4 + c² ≥ ac.
a²/4 + d² ≥ ad.
a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
Sai đề rồi nha bạn!
Đề: Cho \(a,b,c>0\) thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}.\) Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Lời giải:
Với mọi \(a,b,c\in R\) thì ta luôn có:
\(a^2+b^2+c^2\ge2bc+2ca-2ab\) \(\left(\text{*}\right)\)
Ta cần chứng minh \(\left(\text{*}\right)\) là bất đẳng thức đúng!
Thật vậy, từ \(\left(\text{*}\right)\) \(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) \(\left(\text{**}\right)\)
Bất đẳng thức \(\left(\text{**}\right)\) hiển nhiên đúng với mọi \(a,b,c\) , mà các phép biến đổi trên tương đương
Do đó, bất đẳng thức \(\left(\text{*}\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)
Mặt khác, \(a^2+b^2+c^2=\frac{5}{3}\) (theo giả thiết)
Mà \(\frac{5}{3}=1\frac{2}{3}<2\)
\(\Rightarrow\) \(a^2+b^2+c^2<2\) \(\left(\text{***}\right)\)
Từ \(\left(\text{*}\right)\) kết hợp với \(\left(\text{***}\right)\), ta có thể viết 'kép' lại: \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)
Suy ra \(2bc+2ca-2ab<2\)
Khi đó, vì \(abc>0\) (do \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho \(2abc\), ta được:
\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)
\(\Leftrightarrow\) \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Vậy, với \(a,b,c\) là các số thực dương thỏa mãn điều kiện \(a^2+b^2+c^2=\frac{5}{3}\) thì ta luôn chứng minh được:
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
\(ab+bc+ca=0\)
=> \(\frac{ab+bc+ca}{abc}=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Đặt: \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)
Ta có: \(x+y+z=0\)
=> \(x^3+y^3+z^3=3xyz\) (tự c/m, ko c/m đc ib)
hay \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)
Giả sử không có 2 số nào bằng nhau. Coi \(a_1>a_2>a_3>...>a_{2016}>a_{2017}\)
Do \(a_1;a_2;...;a_{2017}\in Z_+\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1009\)( Vô lý)
Do đó có ít nhất 2 số bằng nhau.