Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(8\left(a^2+b^2\right)=\left(2a+2b\right)^2\)
\(\Leftrightarrow8a^2+8b^2=4a^2+8ab+4b^2\)
\(\Leftrightarrow4a^2-8ab+4b^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)
=> đpcm
8(a2+b2) = (2a + 2b)2
=>8a2+8b2= 4a2 + 8ab + 4b
=> 4a2 + 4b2 = 8ab
=> 4a2 + 4b2 - 8ab = 0
=> (2a - 2b)2 =0
=> 2a - 2b = 0
=> 2(a-b)=0
=>a-b=0
=> a=b
Câu 4 :
Ta có : a+b+c=0
=> a+b=-c
Lại có : a3+b3=(a+b)3-3ab(a+b)
=> a3+b3+c3=(a+b)3-3ab(a+b)+c3
=-c3-3ab. (-c)+c3
=3abc
Vậy a3+b3+c3=3abc với a+b+c=0
Bài làm :
Bình phương hai vế của a + b + c = 0 ta được :
\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\) ( 1 )
Bình phương hai vế của ( 1 ) ta được :
\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(=4\left(a^2b^2+b^2c^2+c^2a^2\right)\) ( vì a + b + c = 0 nên 2abc . 0 = 0 )
=> đpcm
Phần còn lại tương tự bạn tự làm nhé
Học tốt
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)( 1 )
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 2 )
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)( 3 )
Ta lại có :
\(\left(ab+bc+ca\right)^2\)
\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)
\(=a^2b^2+b^2c^2+c^2a^2+2abc.0\)
\(=a^2b^2+b^2c^2+c^2a^2\)( 4 )
Thay ( 4 ) vào ( 2 ) ta được :
\(a^4+b^4+c^4+2\left(ab+bc+ca\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)( 5 )
Từ ( 1 ) => \(ab+bc+ca=\frac{-a^2-b^2-c^2}{2}\)
\(\Rightarrow2\left(ab+bc+ca\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)( 6 )
Từ ( 3 ) ; ( 5 ) và ( 6 ) => Đpcm
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
a: \(\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(=a^2x^2-2axby+b^2y^2+b^2x^2+2abxy+a^2y^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)\)
c: \(a^2+2ab+b^2-c^2\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
\(=4m\cdot\left(4m-2c\right)\)
\(=16m^2-8mc\)