K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Bạn tự vẽ hình nhé.

Cho ABCD là hình thang có đáy lớn CD. Qua K kẻ đường thẳng song song BD cắt BC ở Q.

a, Vì AB//CD nên AB//CI.

Đường thẳng song song với BC đi qua A cắt CD tại I nên AI//CD

Xét tứ giác ABCI có:

\(\left\{{}\begin{matrix}AB//CI\\AI//BC\end{matrix}\right.\)

=> T/giác ABCI là hình bình hành

b, Vì AB//CD nên DK//CD

Đường thẳng song song với AD đi qua A cắt CD ở K nên BK//AD

Xét tứ giác ABKD có

\(\left\{{}\begin{matrix}AB//DK\\BK//AD\end{matrix}\right.\)

=> t/giác ABDK là hbh

=> AB=DK

c, Theo câu a, t/g ABCI là hbh nên AB=CI

Mà AB=DK ( c/m câu b )

Suy ra: DK=CI

=> DK + CD = CI + CD

<=> DI=CK

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

13 tháng 4 2020

hình tự vẽ nhé

do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD      (1)

dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK

tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC

có góc PKC= góc BDC (PK//BD)

góc BDA=góc BKP (cùng = DBK)

góc AID=góc BCK 

dễ dàng =) góc ADI = góc BCK  

=) góc DAI = góc KBC

=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC

vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD    (2)

từ (1) và (2) =) BM/MD = BP/PC 

áp dụng định lí ta lét đảo =) MP//DC

chưa hiểu thì hỏi nhé

13 tháng 4 2020

kohkkij

a) Xét tứ giác AFCD có 

AF//CD(AB//CD, F∈AB)

AD//CF(gt)

Do đó: AFCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét tứ giác DCBK có 

DC//BK(DC//AB, K∈AB)

DK//CB(gt)

Do đó: DCBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)