Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD có:
E là trung điểm của AB (gt)
M là trung điệm của AD (gt)
=> EM là đường trung bình của tam giác ABD
=> EM = \(\dfrac{1}{2}\)BD (TC đường trung bình của tam giác)
Mà AC = BD (ABCD là hình thang cân)
=> EM = \(\dfrac{1}{2}\)AC
Xét tam giác ADC có:
M là trung điểm của AD (gt)
G là trung điệm của CD (gt)
=> MG là đường trung bình của tam giác ADC
=> MG // AC và MG = \(\dfrac{1}{2}\)AC (TC đường trung bình của tam giác) (1)
Xét tam giác ABC có:
E là trung điểm của AB (gt)
N là trung điệm của BC (gt)
=> EN là đường trung bình của tam giác ABC
=> EN // AC và EN = \(\dfrac{1}{2}\)AC (TC đường trung bình của tam giác) (2)
Từ (1) và (2) => MG // EN // AC và MG = EN = \(\dfrac{1}{2}\)AC
Mà EM = \(\dfrac{1}{2}\)AC (cmt) => EM = MG = EN = \(\dfrac{1}{2}\)AC
Xét tứ giác MENG:
MG // EN (cmt)
MG = EN (cmt)
=> MENG là hình bình hành (dhnb)
mà EM = MG (cmt)
=> MENG là hình thoi (dhnb)
a) Sử dụng tính chất đường trung bình tam giác và đường chéo hình thang cân ta có MENG là hình thoi.
b) S M E N G = 1 2 S A B C D = 400 m 2
Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)
Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau.
mk chi lam dc y a thui
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔABC
=>MN//AC và MN=AC/2
b: Xét ΔCDA có
P,Q lần lượt là trung điểm của CD,DA
=>PQ là đường trung bình của ΔCDA
=>PQ//AC và \(PQ=\dfrac{AC}{2}\)
MN//AC
PQ//AC
Do đó: MN//PQ
\(MN=\dfrac{AC}{2}\)
\(PQ=\dfrac{AC}{2}\)
Do đó: MN=PQ
Xét tứ giác MNPQ có
MN=PQ
MN//PQ
Do đó: MNPQ là hình bình hành
giup minh