K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

xét biểu thức : 

A = ( a2 - a ) + ( b2 - b ) + ( c2 - c ) + ( d2 - d )

Ta thấy A chẵn nên a2 + b2 + c2 + d2 - ( a + b + c + d ) là số chẵn

từ đề bài a2 + c2 = b2 + d2 nên a2 + c2 + b2 + d2 nên a + b + c + d chẵn 

Mà tổng này > 2 nên là hợp số

15 tháng 10 2021

Ai giúp gấp nhé:D

 

15 tháng 10 2021

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

8 tháng 1

\(a^2+c^2=b^2+d^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)

Ta có

\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)

\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)

Ta thấy 

\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2

\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)

Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)

\(\Rightarrow a+b+c+d⋮2\)

Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2

=> a+b+c+d là hợp số

8 tháng 1

A = [(a +b) + (c + d)].[(a + b) + (c + d)]

A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)

A  = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2

A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd

A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]

A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]

⇒ A ⋮ 2  ⇒ a + b + c + d  ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2

Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)

 

28 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

\(\implies\) \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)

  

11 tháng 3 2020

xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

27 tháng 10 2016

Ta có :

\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)

\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2

\(\Rightarrow a+b+c+d+e\)chia hết cho 2

Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )

\(\Rightarrow\)a+b+c+d+e là hợp số

Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.

28 tháng 10 2016

em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi. 

em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .

a^2+b^2+c^2+d^2+e^2 chia hết cho 2

* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0

*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn

như vậy a+b+c+d+e cũng là một số chắn

mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2  vậy a+b+c+d+e=2k với k khác 1 => dpcm.

( ở đây em chỉ cần khác 2  loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)