Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)
Ta có:
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)
\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)
\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)
Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)
\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)
Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)
Vậy $x=2$ là nghiệm duy nhất của pt đã cho.
Bài 2:
Với mọi $x,y,z$ nguyên không âm thì :
\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)
Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn
Mà \(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$
Vậy $x=0$
Khi đó ta có: \(1+2013^y=2014^z\)
Nếu $z=1$ thì dễ thu được $y=1$
Nếu $z>1$:
Ta có: \(2014^z\vdots 4(1)\)
Mà \(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)
Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))
Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)
\(a^2=-ap-1;b^2=-bp-1;ab=1;cd=1;c+d=-q;\)\(VT=\left(a^2-a\left(c+d\right)+cd\right)\left(b^2-b\left(c+d\right)+cd\right)=\left(-ap-1+aq+1\right)\left(-bp-1+bq+1\right)=ab\left(p-q\right)^2=\left(p-q\right)^2\)
Làm thì làm được nhưng rất dài
Bạn chỉ cần tính theo hệ thức Vi-ét
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
Ta có (a + c)2 < ab + bc - 2ac
<=> ab + bc - a2 - c2 - 4ac > 0 (1)
Ta lại có a2 + b2 + c2 \(\ge\)ab + bc +ca > ab + bc (2)
Từ (1) và (2) => b2 - 4ac > 0
Vậy PT luôn có nghiệm
Xét \(\left\{{}\begin{matrix}\Delta_1=a^2-4b\\\Delta_2=c^2-4d\end{matrix}\right.\) \(\Rightarrow\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)\)
- Nếu \(b+d< 0\Rightarrow\frac{ac}{2}\le b+d\)
\(\Rightarrow a^2+c^2-4\left(b+d\right)\ge a^2+c^2-4.\frac{ac}{2}=\left(a-c\right)^2\ge0\)
\(\Rightarrow\Delta_1+\Delta_2\ge0\Rightarrow\) tồn tại ít nhất một trong 2 biểu thức \(\Delta_1;\Delta_2\) không âm \(\Rightarrow\) luôn có 1 trong 2 pt có nghiệm
- Nếu \(b+d>0\Rightarrow ac\ge2\left(b+d\right)\)
\(\Rightarrow\Delta_1+\Delta_2=\left(a-c\right)^2+2ac-4\left(b+d\right)\)
\(\Rightarrow\Delta_1+\Delta_2\ge\left(a-c\right)^2+2.2\left(b+d\right)-4\left(b+d\right)=\left(a-c\right)^2\ge0\)
\(\Rightarrow\) Tương tự như trên
Vậy pt luôn có nghiệm