\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Đặt  \(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

Ta có: \(\frac{a}{a+b+c}< \frac{a}{a+c}\)

\(\frac{b}{b+c+d}< \frac{b}{b+d}\)

\(\frac{c}{c+d+a}< \frac{c}{a+c}\)

\(\frac{d}{d+a+b}< \frac{d}{d+b}\)

\(\Rightarrow S< \left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{d+b}\right)\)

\(\Rightarrow S< 2\left(1\right)\)

Lại có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{b+c+a+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow S>1\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

15 tháng 2 2020

nhanh the

9 tháng 2 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) ; (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

28 tháng 8 2018

ai làm đk mình k cho

28 tháng 8 2018

Ta có:  a < b     =>    2a < a + b

           c < d      =>    2c < c + d

           m < n     =>    2m < m +n

suy ra:    2 ( a + c + m)  < a + b + c + d + m + n

=>   \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

28 tháng 8 2019

\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)

24 tháng 11 2016

Gọi biểu thức cần so sánh là A

Nếu a< b thì ​​\(\frac{a}{b+m}< \frac{a}{b}< \frac{a+m}{b+m}\)

=> \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

=> cộng các vế trái với nhau, vế giữa với nhau, vế phải với nhau, dâu < giữ nguyên, trong đó vế trái cộng lại rút gọn được 1, vế giữa là A, vế phải cộng lại rút gọn được 2, ra điều phải cm

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu