Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)
Do đó \(\left\{{}\begin{matrix}3a=b+c+d\left(1\right)\\3b=a+c+d\left(2\right)\\3c=a+b+d\left(3\right)\\3d=a+b+c\left(4\right)\end{matrix}\right.\)
Từ (1) và (2) \(\Rightarrow3\left(a+b\right)=a+b+2c+2d\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\Leftrightarrow a+b=c+d\Leftrightarrow\dfrac{a+b}{c+d}=1\)
Tương tự cũng có: \(\dfrac{b+c}{a+d}=1;\dfrac{c+d}{a+b}=1;\dfrac{d+a}{b+c}=1\)
\(\Rightarrow A=4\)
2, Có \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Do đó \(\dfrac{x^2}{4}=\dfrac{1}{4};\dfrac{y^2}{16}=\dfrac{1}{4};\dfrac{z^2}{36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right),\left(-1;-2;-3\right)\)
Bài 2 :
a, Ta có : \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=4\\z^2=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm2\\z=\pm3\end{matrix}\right.\)
Vậy ...
b, Ta có : \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{5+7}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
\(\Rightarrow y=3\)
Vậy ...
Bạn tham khảo câu hỏi tương tự.
Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{b+c+d+c+d+a+a+b+d+a+b+c}=\frac{\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}=3\rightarrow a=b=c=d\rightarrow\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{a+c}{b+d}+\frac{b+c}{a+d}=1+1+1+1=4\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=>a=b=c=d=>\(a+b=\frac{1}{2}\left(a+b+c+d\right)\)
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-b+2b-c+2c-d+2d-a}{a+b}\)
\(=\frac{2\left(a+b+c+d\right)-\left(a+b+c+d\right)}{\frac{1}{2}\left(a+b+c+d\right)}=\frac{a+b+c+d}{\frac{1}{2}\left(a+b+c+d\right)}=\frac{1}{\frac{1}{2}}=2\)
vậy A=2
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(\frac{2a-a}{a+a}.4=\frac{a}{2a}.4=\frac{4a}{2a}=2\)
vậy A=2
Vì \(\frac{a}{b+c+d}\)= \(\frac{b}{a+c+d}\)= \(\frac{c}{a+b+d}\)= \(\frac{d}{a+b+c}\)nên
\(\frac{a}{b+c+d}\)+1 = \(\frac{b}{a+c+d}\)+1 = \(\frac{c}{a+b+d}\)+1 = \(\frac{d}{a+b+c}\) +1
hay\(\frac{a+b+c+d}{b+c+d}\) = \(\frac{a+b+c+d}{a+c+d}\)= \(\frac{a+b+c+d}{a+b+d}\)= \(\frac{a+b+c+d}{a+b+c}\)
Mà a + b + c + d \(\ne\)0 \(\Rightarrow\) \(b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow\) \(a=b=c=d\)
\(\Rightarrow\) \(M=4\)
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\)\(\frac{d}{a+b+c}\)
\(\Rightarrow1+\frac{a}{b+c+d}=1+\frac{b}{a+c+d}=1+\frac{c}{a+b+d}=1+\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Mà: \(a+b+c+d\ne0\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
\(\Rightarrow A=1+1+1+1=4\)
số đo slaf
4
nhe sbn
bài dài
lắm mình
vhir tiện ghi
thế này thôi