Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABK và ΔCDK có
KA=KC
\(\widehat{AKB}=\widehat{CKD}\)
KB=KD
Do đó: ΔABK=ΔCDK
b: ΔABK=ΔCDK
=>\(\widehat{KAB}=\widehat{KCD}\)
mà hai góc này ở vị trí so le trong
nên AB//CD
c: ΔABK=ΔCDK
=>AB=CD
mà CD=CE
nên AB=CE
AB//CD
=>AB//CE
Xét tứ giác ABEC có
AB//CE
AB=CE
Do đó: ABEC là hình bình hành
=>AC=BE
d: Xét ΔABC có
I,K lần lượt là trung điểm của CB,CA
=>IK là đường trung bình của ΔABC
=>IK//AB
mà AB//DE
nên IK//DE
Xét ΔBCE có
M,I lần lượt là trung điểm của BE,BC
=>MI là đường trung bình của ΔBCE
=>MI//CE
=>MI//DE
MI//DE
KI//DE
mà MI,KI có điểm chung là I
nên M,I,K thẳng hàng
a/xét ABM=CDM(c-g-c)
ABMˆ=CDMˆ
b/Tứ giác ABCD là hình bình hành vì 2 dg chéo cắt nhau tại trung điểm mỗi dg AB//CD
c/MC là dg TBinh của tam giác DBN AC//BN
a) xét \(\Delta EAB\)và \(\Delta CAD\)có:
\(\hept{\begin{cases}AE=AC\left(gt\right)\\\widehat{EAB}=\widehat{DAC}\left(đđ\right)\\AB=AD\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta EAB=\Delta CAD\)(c - g - c)
\(\Rightarrow BE=DC\)( 2 cạnh tương ứng)
b) có \(\hept{\begin{cases}BE=2MB\left(gt\right)\\CD=2ND\left(gt\right)\\BE=CD\left(cmt\right)\end{cases}}\)
\(\Rightarrow MB=ND\)
\(\Delta EAB=\Delta CAD\left(cmt\right)\)
\(\Rightarrow\widehat{D}=\widehat{ABE}\)( 2 cạnh tương ứng )
xét \(\Delta DAN\)và\(\Delta BAM\)có
\(\hept{\begin{cases}ND=MB\left(cmt\right)\\\widehat{D}=\widehat{ABM}\left(cmt\right)\\AD=AB\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta DAN=\Delta BAM\left(c-g-c\right)\)
\(\Rightarrow\)AM = AN ( 2 cạnh tương ứng )
\(\widehat{DAN}=\widehat{MAB}\)( 2 cạnh tương ứng )
mà \(\widehat{DAN}+\widehat{NAB}=180^o\left(kb\right)\)
\(\Rightarrow\widehat{MAB}+\widehat{NAB}=180^o\Rightarrow\widehat{MAN}=180^o\)
\(\Rightarrow\)M, N, A thẳng hàng
c) gọi BC cắt Ax tại P
\(\Rightarrow\hept{\begin{cases}BH\le BP\left(cgv\le ch\right)\\CK\le CP\left(cgv\le ch\right)\end{cases}}\)
\(\Rightarrow BH+CK\le BP+CP\)
\(\Rightarrow BH+CK\le BC\)
d) có\(BH+CK\le BC\left(cmt\right)\)
\(\Rightarrow GTLN\)của \(BH+CK=BC\)
dấu bằng xảy ra
\(\Leftrightarrow BH=BP;CK=CP\)
\(\Leftrightarrow H\equiv P;K\equiv P\)
\(\Leftrightarrow Ax\perp BC\)
\(\Rightarrow BH+CK\)lớn nhất