Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Theo TCDTSBN ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có: \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)
Từ (1) và (2) => đpcm
Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!
\(b^2=ac;c^2=bd\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\)
Sorry chị nha.tới đây e bí rồi=))
Đề nghị bạn kiểm tra lại đề mình thấy khi
\(\frac{a}{b}=\frac{1}{2};\frac{b}{c}=\frac{2}{4};\frac{c}{d}=\frac{4}{8}\)
thì thay vào bị sai
\(\frac{a+b}{b+3}=\frac{3+d}{a+d}=\frac{a+b+d+3}{a+b+d+3}=1\)
\(\frac{a+b}{b+3}=1\)do đó a+b=b+3 váy a=3