Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk
\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2-bk.dk}=\frac{b^2.k^2+k^2bd}{d^2k^2-k^2bd}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}\) (đpcm)
Vậy \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(1)
Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)
cho a/b=c/d
chứng minh :
2a/a+b=2c/c+a
a-b/2a+b=c-d/2c-d
a/a^2+b^2=c/c^2+d^2
a+b/a^2-b^2=c+d/c^2-d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)
\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)
Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)
b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)
\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)
Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)
c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)
hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a-b}{2\left(c-d\right)}=\dfrac{bk-b}{2\left(dk-d\right)}=\dfrac{b\left(k-1\right)}{2d\left(k-1\right)}=\dfrac{b}{2d}\)
\(\dfrac{a+b}{2\left(c+d\right)}=\dfrac{bk+b}{2\left(dk+d\right)}=\dfrac{b\left(k+1\right)}{2d\left(k+1\right)}=\dfrac{b}{2d}\)
Do đó: \(\dfrac{a-b}{2\left(c-d\right)}=\dfrac{a+b}{2\left(c+d\right)}\)