K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\dfrac{a-b}{2\left(c-d\right)}=\dfrac{bk-b}{2\left(dk-d\right)}=\dfrac{b\left(k-1\right)}{2d\left(k-1\right)}=\dfrac{b}{2d}\)

\(\dfrac{a+b}{2\left(c+d\right)}=\dfrac{bk+b}{2\left(dk+d\right)}=\dfrac{b\left(k+1\right)}{2d\left(k+1\right)}=\dfrac{b}{2d}\)

Do đó: \(\dfrac{a-b}{2\left(c-d\right)}=\dfrac{a+b}{2\left(c+d\right)}\)

28 tháng 11 2023

Do a/b=c/d  ⇔ ad=bc

1) Ta có: (a+c)b=ab+bc

               (b+d)a=ab+ad

Do bc=ad nên ab+ad=ab+bc

Suy ra (a+c)b=(b+d)a   (đpcm)

2) Ta có: (b+d)c=bc+dc

               (a+c)d=ad+cd

Do bc=ad nên bc+dc=ad+cd

Suy ra (b+d)c=(b+d)c   (đpcm)

3)Ta có:(a+b)(c-d)=ac-ad+bc-bd=(ac-bd)-(ad-bc)

             (a-b)(c+d)=ac+ad-bc-bd=(ac-bd)+(ad-bc)

Do ad=bc  ⇔ ad-bc=0 nên (ac-bd)-(ad-bc)=(ac-bd)+(ad-bc)

⇔(a+b)(c-d)= (a-b)(c+d) (đpcm)

10 tháng 3 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk

\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2-bk.dk}=\frac{b^2.k^2+k^2bd}{d^2k^2-k^2bd}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}\) (đpcm)

Vậy \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

16 tháng 10 2021

Ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a-b}{c-d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (1)

Lại có \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{a.b}{c.d}\left(\text{ do }\frac{a}{b}=\frac{c}{d}\right)\)(2)

Từ (1) và (2) => \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a.b}{c.d}\)

8 tháng 12 2018

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(1)

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)(2)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)

26 tháng 8 2019

help