K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\dfrac{a-b}{2\left(c-d\right)}=\dfrac{bk-b}{2\left(dk-d\right)}=\dfrac{b\left(k-1\right)}{2d\left(k-1\right)}=\dfrac{b}{2d}\)

\(\dfrac{a+b}{2\left(c+d\right)}=\dfrac{bk+b}{2\left(dk+d\right)}=\dfrac{b\left(k+1\right)}{2d\left(k+1\right)}=\dfrac{b}{2d}\)

Do đó: \(\dfrac{a-b}{2\left(c-d\right)}=\dfrac{a+b}{2\left(c+d\right)}\)

10 tháng 3 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk ; c = dk

\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2-bk.dk}=\frac{b^2.k^2+k^2bd}{d^2k^2-k^2bd}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}\) (đpcm)

Vậy \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)

26 tháng 8 2019

help

8 tháng 12 2018

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(1)

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)(2)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a}{c}\right)^2\left(đpcm\right)\)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)

\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)

Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)

b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)

\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)

Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)

c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)

hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)