Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta có:
\(b+c=2a\)
\(\Rightarrow2b+2c=4a\)
Mà 2c=a+b
\(\Rightarrow\)2b+a+b=4a
\(\Rightarrow3b=3a\)
\(\Rightarrow a=b\)
Chứng minh tương tự:b=c;a=c
Thay vào biểu thức:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-1}{x-2}\)
b: Khi x=1/2 thì \(B=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{2}{3}\)
Khi x=-1/2 thì B=2/5
c: Để B nguyên thì \(x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)
a, đk : x khác -2 ; 2
\(B=\left(\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{1}{2-x}\)
b, Ta có \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2}\)
Với x = 1/2 ta được \(B=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)
Với x = -1/2 ta được \(B=\dfrac{1}{2+\dfrac{1}{2}}=\dfrac{2}{5}\)
c, \(\dfrac{1}{2-x}\Rightarrow2-x\inƯ\left(1\right)=\left\{\pm1\right\}\)
2-x | 1 | -1 |
x | 1 | 3 |
\(x=\dfrac{1}{y}\Rightarrow\dfrac{1}{y}-y=4\\ \Rightarrow y^2+4y-1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\\y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\end{matrix}\right.\)
Với \(x=2-\sqrt{5};y=-2-\sqrt{5}\)
\(A=x^2+y^2=18\\ B=x^3-y^3=76\\ C=x^4+y^2=322\)
Với \(x=2+\sqrt{5};y=-2+\sqrt{5}\)
\(A=x^2+y^2=18\\ B=x^3-y^3=76\\ C=x^4+y^4=322\)
A=x^2+y^2
=(x-y)^2+2xy
=4^2+2=18
B=(x-y)^3+3xy(x-y)
=4^3+3*1*4
=64+12=76
C=(x^2+y^2)^2-2x^2y^2
=18^2-2
=322
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)